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SUMMARY 

Imputation of genotypes from low-density single nucleotide polymorphism (SNP) panels to 
higher density panels is a common approach applied to increase the density of genotypes used in 
genomic selection and genome wide association studies (GWAS). Accuracy of imputation from 
Illumina BovineSNP50 to Illumina HD SNP panels was assessed within tropical composite beef 
cattle using 589 animals. The average imputation accuracy was high according to the percentage of 
concordant genotype calls (CONCORD) (96%) or the correlation between actual and imputed 
genotypes (𝑟(𝑎,𝑖)

2 )(0.94). Considering imputed genotypes for a genome wide association study, we 
estimated that on average the power of GWAS to be approximately 12% less than genotyping all 
animals on Illumina HD. The accuracy of imputing individual SNPs was found to vary 
substantially, depending on multiple factors such as minor allele frequency and chromosome. 
There was a large number of SNPs for which the 𝑟(𝑎,𝑖)

2  was less than 0.9. The allelic R2 statistic 
reported by BEAGLE was able to identify a large number of such SNP. Placing a threshold on 
allelic R2 statistic resulted in a marginal increase in average correlation between actual and 
imputed genotypes but a large decrease in the percentage of SNP with 𝑟(𝑎,𝑖)

2  less than 0.81 (from 
14% to 2.4%) 
 
INTRODUCTION 

Imputation of genotypes across different single nucleotide polymorphism (SNP) panels or from 
low density panels to high density panels is a routine way of increasing the number of markers for 
genomic selection (GS) and genome wide association studies in livestock. On average imputation 
accuracy is high and so genomic breeding values developed on imputed or actual genotypes are 
highly correlated (Brondum et al. 2012, Erbe et al. 2012). The impact of imputation accuracy on 
GWAS is less well understood. Additionally, the impact of using imputation on a diverse multi-
breed reference population, such as the Tropical Composite beef cattle from northern Australia 
merits investigation. Breed diversity may have a negative impact on imputation accuracy and 
therefore it may affect both GWAS. 

The aims of this study were: 1) to test the accuracy of imputation in a population of tropical 
composite beef cattle, 2) to test the effectiveness of using quality control statistics as a threshold 
for removing poorly imputed SNPs.  

 
MATERIALS AND METHODS 

Animals and genotypes. Genotype data from 589 Tropical Composite animals were used in 
this analysis. The Tropical Composite cattle consisted of both crossbred cattle and stabilised 
crosses from a range of founder breeds. Details on management and breeding of this cattle 
population developed by the Cooperative Research Centre for Beef Genetic Technologies are 
provided elsewhere (Barwick et al. 2009, Burns et al. 2013, Corbet et al. 2013). The 
Illumina HD bead chip was used to genotype the samples according to the manufacturer’s 
protocols (Illumina Inc., San Diego, CA). Standard quality control: SNPs with call rate < 0.9 or 
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minor allele frequency < 0.01 were excluded. Missing genotypes were imputed using BEAGLE 
3.2 (Browning and Browning, 2009). Quality control and imputation for missing genotypes 
resulted in 729,068 SNP with complete genotypes for 589 cattle. 

Imputation from low density SNP panel. Imputation from the intersecting SNPs from 
Illumina BovineSNP50 to Illumina HD (729,068 SNP) was performed using the default settings in 
BEAGLE (Browning and Browning 2009). A 30 fold cross validation was used to ensure that the 
reference set of genotypes used to impute new genotypes was representative of the full reference 
population. The cross validation was performed in 3 steps as follows: 1) Groups of 20 animals 
were randomly allocated into 30 cross validation sets, 2) One set of 20 animals was imputed from 
BovineSNP50 to Illumina HD using the remaining groups HD SNP as reference genotypes, 3) this 
process was performed 30 times so each group had been used as a test set once.  

Imputation accuracy and analysis. The accuracy of imputation calculated across animals 
within SNP was assessed two ways: 1) the concordance between actual and imputed genotype 
calls (CONCORD) and 2) the correlation between actual and imputed number of copies of the 
Allele coded B according to Illumina’s A/B coding convention (𝑟(𝑡,𝑖)

2 ). The correlation was used as 
the primary statistic for assessing imputation as it is less influenced by minor allele frequency 
(Browning and Browning 2009).  When imputing data generally we do not know the true accuracy 
of imputation for each SNP, BEAGLE provide a statistic called the allelic r2  (𝑅𝑒𝑠𝑡2 ) which 
estimates the squared correlation between actual and imputed SNP. The effectiveness of this 
measure in identifying SNP with low CONCORD and (𝑟(𝑎,𝑖)

2 ) was assessed.  
 
RESULTS AND DISCUSSION 

On average imputation was good with a concordance rate of 0.96 and a (𝑟(𝑎,𝑖)
2 ) of 0.88 (Table 

1). Thus the power of performing GWAS using imputed genotypes would be approximately 12% 
lower than using Illumina HD genotypes.  

 
Table 1 Summary of concordance and correlation between actual and imputed genotypes 
with an increasingly stringent threshold applied using allelic r2 

 

Threshold on 𝑅𝑒𝑠𝑡2  CONCORD 𝑟(𝑡,𝑖)
2  Markers excluded 

(%) 

0 0.96 0.88 0.0 

0.5 0.96 0.89 1.7 

0.75 0.96 0.90 6.7 

0.95 0.99 0.97 70.7 
 
The measures of imputation accuracy in Table 1 are comparable with other studies performed in 
cattle with Erbe et al. (2012) finding concordance of actual and imputed genotypes of 0.97 in 
Holsteins and 0.96 in Jersey cattle. Present results were on the lower range of correlations between 
actual and imputed genotypes of 0.92-0.98, reported by Brondum et al. (2012). A slight reduction 
in imputation accuracy may be expected in the current study due to diverse genetic background of 
the cattle under investigation. Although the average imputation accuracy was quite high there was 
substantial variation in imputation accuracy. Imputation accuracy was affected by a number of 
factors including minor allele frequency and chromosomes, chromosome X in particular was 
imputed with lower accuracy.  
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 As the threshold on 𝑅𝑒𝑠𝑡2  for excluding SNP became increasingly stringent the mean CONCORD 
and 𝑟(𝑎,𝑖)

2  were high their means increased from 0.961 to 0.986 and  0.88 to 0.97  for CONCORD 
and 𝑟(𝑡,𝑖)

2  respectively (Table 1). The editing of SNP based on 𝑅𝑒𝑠𝑡2  also decreased the number of 
SNP with low call rates, this is demonstrated visually in Figure 1 where fewer SNP with low 𝑟(𝑡,𝑖)

2  
appear successively from (a) through to (d). Additionally 𝑅𝑒𝑠𝑡2  was highly correlated with 
𝑟(𝑎,𝑖)
2 (0.81).  

 
Figure 1. The correlations between imputed and actual genotypes with increasingly stringent 
thresholds applied using allelic r2.  
  

Figure 1 shows that many SNPs were imputed with low accuracy. The ability to identify such 
SNPs was examined by considering the ability of  𝑅𝑒𝑠𝑡2   to identify SNPs with CONCORD or 𝑟(𝑎,𝑖) 
lower than 0.9. False negatives were be defined as SNPs with correlation or concordance lower 
than 0.9 that were not excluded by quality control. Conversely, false positives would be SNPs with 
correlation or concordance greater than 0.9 that were excluded. As the 𝑅𝑒𝑠𝑡2  threshold for selecting 
SNPs becomes more stringent the number of false negatives decreases substantially (Table 2). 
There is a trade off as the number of false positives also increases, this is especially evident when 
the threshold is 0.9 or above. A reasonable compromise is to set the threshold to approximately 0.8 
where false negatives (for the correlation) are reduced from 14.8% to 2.4% while false positives 
are 9.4%. 
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Table 2 Percentage of false negatives and false positives for concordance and correlation 
with an increasingly stringent threshold applied to BEAGLE r2 

 
 Percentage false negatives*1 Percentage false positives*2 

Threshold on allelic r2 Concordance Correlation Concordance Correlation 

0 3.7 14.8 0.0 0.0 

0.5 3.6 13.6 1.6 0.4 

0.75 2.9 10.5 5.9 2.0 

0.95 0.0 0.0 69.6 65.6 
*1 Percentage false negatives:  percentage of SNPs with correlation or concordance lower than 0.9 that were not 
excluded;*2Percentage of false positives: percentage of SNPs with correlation or concordance greater than 0.9 
that were excluded.  

 
The current study focused on a small part of genotype quality control for use of imputed 

genotypes in GWAS studies. Attention must be played to quality control at all stages of the 
analysis. The detection of imputation accuracy per individual animal would also be an important 
step to improve the overall quality control. It was found that the genotype probability of each 
genotype call averaged over each animal was not related to overall imputation accuracy (data not 
shown).. In summary, special consideration of individual SNP imputation accuracy could avoid 
detection of false QTL, when performing genome wide associations with imputed SNP data. It is 
possible to use 𝑅𝑒𝑠𝑡2  as a quality control statistic to reduce imputation accuracy issues.  
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