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SUMMARY 

The objective of this study was to quantify additional accuracy of genomic evaluation from the 
addition of female genotypes to a dairy cattle population. The basic training set consisted of 6,150 
progeny-tested bulls born prior to 2007 and the validation set consisted of 350 progeny-tested bulls 
born 2007-2008. Additionally, 36,350 female genotypes were included in the training population. 
The phenotypes were deregressed breeding values for production traits. Ridge regression was used 
with two models: (1) common SNP effects fitted for both genders and (2) SNP effects depending 
on gender with an assumed correlation. Bayes methods B and Cπ were also fitted under scenario 
(1). The accuracy of genomic evaluation was increased by 5 to 10 percentage points with the 
inclusion of female genotypes, depending on breed and trait. There was little difference in accuracy 
among models and methods of analyses. 

 
INTRODUCTION 

Genomic breeding values are now being widely used for bull selection in the dairy industry.  
One factor influencing the accuracy of genomic predictions is the size of the reference or training 
population. The relationship between predictive ability and the size of reference population has 
been demonstrated in Daetwyler et al. (2008) and Goddard and Hayes (2009). An option to 
increase accuracy of genomic evaluation is to combine reference populations from different 
countries (EuroGenomics, David e tal. 2010). Another option to boost the reference population is 
to genotype females. Apart from bull dams, LIC has a program of genotyping daughters of young 
bulls in the sire proving scheme (SPS) to maintain integrity of  bull proofs through parentage 
testing.  

 
MATERIALS AND METHODS 

As at the end of the 2012/2013 season, LIC had a total of 6,500 progeny-tested bulls genotyped 
on the Illumina BovineSNP50 Beadchip (Illumina Inc., San Diego, CA). The validation population 
was taken as the 350 bulls progeny tested over the last two seasons (born 2007-2008). The base 
reference population comprised the remaining 6,150 bulls born 2006 and earlier. From a larger 
pool of genotyped cows, a total 36,350 with lactation records were included in the reference 
population. The cows comprised SPS daughters and their contemporaries as well as cows 
genotyped for other research purposes but excluded daughters of young bulls in the validation 
population. Most of the cows were genotyped on the Illumina 50K panel with some genotyped on 
a lower density GGP panel (6.5K) and then imputed to 50K using Beagle 3.3.2 (Browning and 
Browning 2009). There were 38,808 SNP included in the analyses after removing SNP for low call 
rates, minor allele frequencies <2%, non-Mendelian inheritance, failed Hardy-Weinberg tests and 
low imputation accuracy.  The bull population was multi-breed comprising mainly Holstein-
Friesian (HF), Jersey (JE) and crossbred (FJ) bulls. The bull reference comprised 56% HF, 34% JE 
and and 7% FJ and the validation population was correspondingly 39%, 30% and 24% reflecting 
the development of crossbred bulls in recent years. The cow population was a similarly structured 
multi-breed population with 32% HF, 23% JE and 40% FJ. 

The SNP effects were estimated using multiple-regression models where the marker effects are 
treated as random. The model can be written 
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 y=Xb+Zs+e        [1] 

where y is phenotype, b denotes fixed effects (in this case just an overall mean), s denotes SNP 
effects, X and Z are design matrices and 𝐸(𝒚) = Xb,𝒗𝒂𝒓(s) = I𝝈𝒔𝟐,𝒗𝒂𝒓(𝒆) = R𝝈𝒆𝟐 . The mixed 
model equations (MME) corresponding to [1] are 
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where 𝜆 = 𝜎𝑒2 𝜎𝑠2⁄ . This ridge regression with known 𝜆  is equivalent to GBLUP when solving 
directly for genomic breeding values g=Zs provided we have the relation 𝜎𝑔2 = 𝜎𝑠2 ∑ 2𝑝𝑗𝑗 (1 − 𝑝𝑗) 
between genetic variance and common SNP variance, with 𝑝𝑗 denoting allele frequency of SNP j. 
This basic ridge regression model was used  for the two reference sets; (1) bulls only and (2) bulls 
plus cows. In addition, for reference set (2), a mixture model approach was used for model [1]. A 
Bayes B model was fitted assuming that each marker has either a zero effect with known 
probability 𝜋 = 0.95 or a non-zero effect with different 𝜆 values (Meuwissen et. al., 2001).  A 
Bayes Cπ model was also fitted where one assumes a common λ but unknown π (Habier et. al., 
2011). 

For reference set (2), model [1] was extended to allow for different SNP effects depending on 
gender. 

           y=Xb+Z1s1 + Z2s2 + e      [2]   
with  
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where ρ denotes SNP correlation between genders and with common variance among SNP within 
gender and I is the identity matrix. The MME corresponding to model [2] are 
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Two values of ρ equal to 0.7 and 0.9 were assumed. The BLUP models were solved using a 
conjugate gradient method.   

Phenotypes were the the deregressed BV for the three production traits, milk volume, fat and 
protein yield, hereafter referred to as milk, fat and protein. The deregression procedure was carried 
out as in Garrick et. al. (2009). The elements of the diagonal R matrix associated with the error 

structure were calculated as �𝑐 + 1−𝑟𝑖
2

𝑟𝑖
2 � 𝜎𝑔2/𝜎𝑒2  where c=0.1 is the assumed fraction of genetic 

variance unexplained by the markers and the second component is associated with the error 
variance of the deregressed BV with reliability 𝑟𝑖2 for individual i. The constant 𝑐−1 also acts as an 
upper bound for the weighting applied to phenotypes corresponding to highly proven sires. 

The validation procedure involved the regression of deregressed BV on genomic BV for the 
young bulls within breed as per Interbull procedure (Mantysaari et. al. 2010). The correlations 
were summarized as well as the regression coefficients to assess accuracy and bias of prediction. 
The accuracy attained through selection of the top 20 bulls on genomic BV was also investigated. 

 
RESULTS AND DISCUSSION 

The correlations between genomic BV and progeny-test BV for milk, fat and protein, based on 
the validation population, are summarised within breed in Table 1. The first data column is based 
on the bull reference while all other results relate to the combined reference. The inclusion of cows 
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in the reference has increased the correlations by an average of 0.09-0.10 for milk and fat and 
somewhat less at 0.05 for protein. Comparisons across columns of Table 1 indicate generally small 
differences among genomic evaluation methods using the combined reference population. In 
particular there appears little advantage to fitting marker effects by gender. 

 

Table 1. Validation correlations for bull reference and combined (bull + cow) reference 
populations – RR=ridge regression, ρ is assumed correlation when fitting SNP effects by sex 

Reference bull combined combined combined combined combined 
Method RR RR RR(ρ=0.9) RR(ρ=0.7) BayesB BayesCπ 
Fat       
HF 0.55 0.72 0.72 0.69 0.69 0.71 
JE 0.62 0.64 0.66 0.66 0.61 0.63 
FJ 0.50 0.60 0.62 0.62 0.60 0.60 
Protein       
HF 0.50 0.54 0.56 0.55 0.54 0.56 
JE 0.51 0.58 0.58 0.57 0.56 0.58 
FJ 0.68 0.71 0.72 0.72 0.66 0.69 
Milk       
HF 0.59 0.68 0.68 0.66 0.70 0.71 
JE 0.54 0.70 0.67 0.64 0.69 0.69 
FJ 0.74 0.76 0.77 0.77 0.76 0.77 

 
The average reliabilities of the phenotypes for production traits were about 0.85 and 0.3 for 

bulls and cows, respectively.  Based on the weighting formula, bulls would get an average weight 
of 3.6 and cows 0.4. Thus it takes about nine cows at that level of reliability to provide information 
equivalent to one progeny-tested bull and so  36,350 cows is equivalent to about 4,000 bulls. 
Based on the formula of Goddard and Hayes (2009), and assuming a heritability of 0.8 and 
effective population size of 100, the expected incremental change in the accuracy of genomic 
evaluation due to an increase of 4,000 bull equivalents above a base of 6,000 bulls is 
approximately 0.08. The results of this study suggest that the advantage of inclusion of the female 
data is close to expectation. 

Table 2 summarises the regression coefficient of phenotype on estimated genomic BV for the 
ridge regression. The values represent a weighted average across breed. The expectation is unity 
and smaller values indicate some degree of inflation or bias in the genomic predictions. With the 
base reference set of bulls, the regressions are close to unity but decrease to about 0.8 for fat and 
protein when cows are included in the reference, suggesting some inflation. It is important to 
correct for this bias otherwise overestimation of genomic BVs will erode farmer confidence in 
genomic evaluations. 

 
Table 2. Validation regression coefficient weighted across breed 

Trait Bull reference Bull + cow reference 
Fat 1.01±0.09 0.80±0.05 
Protein 0.94±0.08 0.80±0.06 
milk 0.97±0.07 0.95±0.05 
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The regression yields estimates of population parameters, however it is the animals at the top 
end of the distribution that are of interest. The top 20 bulls within breed were selected on genomic 
BV for the two reference populations. The change in average phenotype of these two groups of 
bulls (reference (2) minus reference (1)) is presented in Table 3 along with the number of bulls 
common to both groups. For each trait there was a positive change for two of the three breeds. The 
standard error of the difference (SED) between the averages of the two groups, assuming 
independence among bull proofs, is expected to be 𝜎𝑔�2(𝑛 − 𝑚)(1/𝑟 − 1)/𝑛 where n=20  is the 
number of bulls selected, m is the number of bulls in common and r=0.75 is the daughter-proven 
reliability of an individual bull. Given genetic standard deviations of 329 litres, 13.6 kg, and 9.6 kg 
for milk, fat and protein, respectively, the SEDs are included in Table 3. Apart from fat, the 
evidence of significant improvement using data from the selected bulls is not as strong as that 
indicated by the population statistics however they are based on small numbers. 
 
Table 3. Number of bulls intersecting the top 20 for genomic BV based on the two reference 
populations and difference in average deregressed daughter-proven BV 

 Fat (kg) Protein (kg) Milk (litres) 
Breed Bulls in 

common 
difference Bulls in 

common 
difference Bulls in 

common 
difference 

HF 12 6.1±1.6 9 0.4±1.3 9 20±45 
JE 16 -1.6±1.1 13 1.0±1.0 15 30±30 
FJ 13 2.6±1.5 14 -0.9±1.0 15 -60±30 

 
CONCLUSIONS 

There is some evidence to indicate that increasing the size of reference population through 
inclusion of cow data may lead to an improvement in the accuracy of genomic evaluation. The 
feasibility of including cow genotypes in a single-step method of evaluation (Aguilar et. al., 2010), 
which combines information from genotyped and non-genotyped animals, is currently being 
investigated to confirm results of this study and check validation over a sequence of years. This 
will provide computational challenges in terms of inversion of the genomic relationship matrix 
which may become infeasible in the future as the number of genotyped animals increases. 
Reparameterisation of the MME in terms of marker effects instead of directly as BVs may be a 
better computational strategy. 
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