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SUMMARY 

This study presents the predictive ability in genome-assisted evaluations using different density 
arrays and two different statistical methods. Predictive ability from the Genomic BLUP (G-
BLUP) using 1632 progeny tested sires genotypes with the BovineSNP50v2 BeadChip (50K) 
were considered as benchmark. First, genotypes from the BovineLD BeadChip (LD6K) were 
imputed to a BovineSNP50v2 BeadChip (50K). Second, genotypes were imputed to the 
BovineHD BeadChip (HD). The Random Boosting (R-Boost) was evaluated as an alternative 
method to G-BLUP. Four traits were analyzed: milk yield (MY), fat percentage (FP), somatic cell 
count (SCC) and days open (DO).  

In general, R-Boost and G-BLUP showed similar results with overlapping confidence interval. 
Low density genotypes imputed to 50K achieved a similar predictive ability than native 50K 
genotypes. However, an increase in Pearson correlation and lower predictive mean square error 
were found across traits when genotypes were imputed to HD. The larger improvements were 
found for DO when using imputed HD genotypes (up to 0.06 greater Pearson correlation units) 
and for FP using R-Boost (up to 0.20 greater Pearson correlation units). 

These results showed that the predictive ability of certain traits may be improved either 
imputing genotypes to HD or utilizing a method that get adapted to the genetic architecture of trait.  

 
INTRODUCTION 

The next key objective in genomic selection programs is to translate the huge, and increasing, 
amount of genomic information in a useful tool to breeders (Pryce and Daetwyler 2012). Low 
density SNP panels and posterior imputation is a promising way to reduce genotyping costs while 
maintaining a large predictive reliability. There is a need to integrate different density SNP panels 
in genomic breeding programs. Further, there may be an interaction between the density of the 
original genotype and the statistical method for DGV prediction, and these may be trait dependent 
as well. It is known that methods based on marker regression have better predictive ability than 
methods based on genomic relationship matrices in traits that are regulated by major genes. 
Higher-density arrays are expected to capture a larger amount of genetic variance because LD 
between markers and causal mutations is supposed to be higher. However, previous studies have 
shown only a slight increase in predictive accuracy using arrays of up to 700K SNPs (VanRaden et 
al. 2013). 
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The objective of this study was to compare imputation accuracy, predictive ability, and 
selection efficiency for selection candidates genotyped at different densities using the Random 
Boosting (R-Boost) and G-BLUP algorithms. 

 
MATERIAL AND METHODS 

Genotypes and phenotypes. A total of 2658 genotyped bulls were used in this study, using the 
BovineSNP50.v2 Beadchip for 2226 bulls and the BovineSNP50.v1 Beadchip (Illumina Inc,) for 
240 bulls. These 2658 bulls build up the 50K Spanish Holstein population (50K). Additionally, 
192 were genotyped using the BovineHD BeadChip (HD). Editing and filtering processes of 
genotypes led to 39,714 and 540,501 SNPs for the 50K and HD evaluations, respectively.  

A total of 1632 progeny tested bulls born before 2006 were used as the reference set (1412 for  
DO), labeled as TRAIN50K. Bulls born between 2006 and 2010 were used as the validation sets 
(382 for MY, FP and SCC and 216 for DO), labeled as TEST50K.  

Four complex traits were examined: milk yield (MY), fat percentage (FP), somatic cell count 
(SCC) and days open (DO). These traits were selected to show differences regarding heritability 
of the trait and amount of phenotypic information available. Deregressed MACE progeny proofs 
(DRP) from January 2009 Interbull evaluation (Jairath et al. 1998) were used to estimate marker 
coefficients in the reference set.  

Imputation. Low density genotypes in the testing set were created in silico, masking SNPs 
included in the 50K assay that were not included in the Bovine LD (LD6K) (Illumina Inc.) assay. 
Thereafter, phased haplotypes from 1632 animals in TRAIN50K were used as reference set for 
imputing the LD6K validation set using Beagle (Browning and Browning 2009). The outcomes 
were referred as 6K50K. Then, imputation from 50K (6K50K, TEST50K and TRAIN50K) to HD 
(6KHD, 50KHD and TRAIN50KHD) was implemented using the original HD population as 
reference. 

Genomic evaluation models. Two different genomic evaluation models were used: Random 
boosting (R-Boost) (Gonzalez-Recio et al., 2013) and G-BLUP (VanRaden, 2008). 

Predictive ability. Accuracy and predictive MSE. The prediction accuracy of genomic 
evaluations was computed as the Pearson correlation between the predicted DGVs and the 
December 2011 DRPs. The PMSE of predictions was also estimated. Means and confidence 
intervals were estimated using bootstrapping for each evaluation output (Efron, 1986), although 
these results are not shown in this work.  
 
RESULTS AND DISCUSSION 

Imputation Performance The allele error rate at imputing genotypes from customized LD6K 
to 50K was 1.3%. Those results are in accordance to previous studies using similar population 
sizes (Zhang and Druet, 2010; Berry and Kearney, 2011; Dassonneville et al. 2012). The LD6K 
array is an important tool for candidates preselection and genotyping females. Allele error rate of 
imputation from 50K to HD was 0.9% when a small reference population of 192 bulls genotyped 
in HD was used. 

Predictive ability  Pearson correlations obtained from the two methods are shown in Table 1. 
Both methods resulted in similar accuracy, although R-Boost was the preferred method for FP and 
G-BLUP for MY and DO, while for SCC results were case dependant.  
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Table 1. Accuracy for the genomic estimation of two evaluation methods for four traits of 
economic interest in dairy cattle after imputation from 6K and 50K to 50K and HD.  

 
Trait Method 6K50K TEST50K 6KHD 50KHD 

Milk yield  
(MY) 

G-BLUP 0.59 0.59 0.54 0.55 

R-Boost 0.55 0.57 0.54 0.54 

Fat percentage 
(FP) 

G-BLUP 0.60 0.60 0.55 0.55 

R-Boost 0.78 0.78 0.79 0.80 

Somatic cell 
count (SCC) 

G-BLUP 0.49 0.48 0.50 0.47 

R-Boost 0.45 0.46 0.50 0.49 

Days open 
(DO) 

G-BLUP 0.29 0.19 0.32 0.31 

R-Boost 0.19 0.22 0.20 0.28 
In bold: The preferred method within trait and set criteria 

 
Prediction accuracy slightly increased for all traits after imputation to HD, excepting for MY. 

This increment was more relevant (up to 6 points in accuracy) for DO, which was the analyzed 
trait with smaller heritability. These results were in accordance with results previously reported for 
other Holstein populations, where estimates from HD were slightly better than those from 50K 
(Erbe et al. 2012, VanRaden et al. 2013).  

Confidence intervals estimated by bootstrapping showed that distributions regarding prediction 
accuracy widely overlapped across methods and sets for MY and SCC (results not shown). 
However, R-Boost estimates were more accurate than G-BLUP for FP. As expected, large 
bootstrapped confidence intervals were found for DO (results not shown).  

The MSE of prediction showed notable differences between evaluation methods (Table 2). R-
Boost showed smaller PMSE in all four traits (12%, 54%, 12%, and 5% smaller for MY, FP, SCC, 
and DO, respectively). Note that R-Boost aims to minimize the MSE, as this is assumed as the loss 
function. Those results, and the aforementioned accuracies were in agreement with (Jiménez-
Montero et al., 2013), although bootstrap analyses showed no significant differences. As before, 
lower PMSE were obtained after imputation to HD, excepting for MY.  
 
CONCLUSIONS 

Imputation using Beagle software was efficient for the reconstruction of 50K genotypes from 
low-density chips. Genomic evaluation methods (R-Boost and G-BLUP) resulted in similar 
prediction ability for the traits and genotypes included in this study. R-Boost showed clearly better 
performance for FP, and in terms of PMSE for all traits. However, no clear differences were found 
in terms of accuracy.  

In general, some improvement in the predictive accuracy was obtained after imputation to HD. 
Genetic and genomic evaluation units should consider using different methods regarding the trait 
evaluated, and imputation to HD might be interesting to increase the predictive ability of some 
traits, especially those of low heritability or those regulated by major genes (e.g. FP, SCC, DO). 
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Table 2. Mean Squared Errors in the validation set regarding genomic evaluation method 
and imputation strategy (from 6K and 50K to 50K and HD) for milk yield, fat percentage, 
somatic cell count and days open.   

 
Trait Method 6K50K TEST50K 6KHD 50KHD 

Milk yield  
(MY) 

G-BLUP 255 258 276 278 
R-Boost 236 229 241 240 

Fat percentage 
(FP) 

G-BLUP 0.044 0.044 0.048 0.047 
R-Boost 0.030 0.030 0.028 0.027 

Somatic cell 
count (SCC) 

G-BLUP 155.1 154.5 152.0 143.3 
R-Boost 138.3 137.4 131.7 133.4 

Days open 
(DO) 

G-BLUP 548.6 636.3 530.2 535.1 
R-Boost 541.9 523.4 546.4 519.6 

In bold: The preferred method within trait and set criteria 
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