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SUMMARY 

To improve our molecular understanding of bovine fat metabolism, global patterns of gene 
expression were explored in 5 fat depots: subcutaneous rump (SC), intermuscular (Inter), 
intramuscular (IMF), omental (Omen) and kidney (Kid). All depots share conserved co-expression 
gene sets relating to fundamental adipocyte cytoskeletal architecture, metabolism and 
inflammation. However, the various depots could clearly be discriminated from each other by gene 
expression. Differences in fatty acid saturation between SC and the other depots are reflected by 
differential expression of the SCD gene that encodes the Δ 9 desaturase enzyme. The fundamental 
lipogenic machinery such as the ACACA gene encoding the rate limiting synthetic enzyme acetyl 
coA carboxylase is expressed at lower levels in IMF. We also detected differences in expression 
consistent with divergent lipogenic fuel preferences. Across depots, the most differentially 
expressed (DE) genes align with those published in the literature for non-ruminants, illustrated by 
SC rump’s highly divergent expression of HOXA10 and DLK1. These genes are likely markers for 
populations of pre-adipocytes whose properties vary between depots. 
 
INTRODUCTION 

Deposition of marbling fat has a positive impact on sensory meat quality through enhanced 
flavour, juiciness and tenderness. Development of the non-edible fat depots, particularly 
subcutaneous fat (SC), is considered energetically and commercially wasteful. Therefore, a better 
understanding of fat depot biology contributes to the challenge of efficiently maintaining product 
quality in a resource-constrained world. Genetics and nutrition can alter percent intra muscular fat 
(IMF%) and fat depot distribution. However, IMF development remains an enigmatic trait. In 
cattle, there are few, if any, known causal mutations, phenotypic variation in IMF% explained by 
single nucleotide polymorphisms (SNP) is modest (Barendse et al. 2010) and the key precursor 
cell populations have not been unequivocally identified (Harper and Pethick 2004). Physiological 
differences between depots have been postulated. For example, IMF adipocytes are thought to 
have a lipogenic preference for glucose and lactate carbon while SC adipocytes prefer acetate 
(Smith et al. 2009). The expression research described here underpins gene and pathway discovery 
in bovine fat metabolism. 
 
MATERIALS AND METHODS 

In brief, 15 individual 250 day grain fed Angus, Hereford and Wagyu × Angus steers (n = 5 per 
breed) were slaughtered at ~26 months of age as part of a larger experiment detailed by 
(Greenwood et al. 2011). Fat depot samples were dissected from each carcass as soon as possible 
after slaughter from the m. longissimus dorsi (IMF), Inter, Omen, Kid and SC depots and snap 
frozen in liquid nitrogen. The longissimus dorsi muscle with IMF intact (LD) was also sampled. 
Total RNA was phenol chloroform extracted using Trizol (Invitrogen) following the 
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manufacturer’s instructions. RNA yield and purity were determined using microphotometry and 
RNA integrity by agarose gel electrophoresis. RNA was submitted to the Ramaciotti Institute 
(Randwick, NSW, Australia) for hybridisation to the 4×44K one colour Agilent bovine array. Data 
was normalised using a previously described mixed-model approach (Reverter et al. 2005) and 
expressed as log2 values. The expression measurements represent mRNA abundance on a per unit 
total RNA basis. 

Data-driven clustering. The expression profiles of 10,000 genes chosen at random were 
imported into Permut Matrix software (Caraux and Pinloche 2005). Global relationships between 
depots based on the molecular data were determined using unsupervised hierarchical clustering 
performed on columns for all tissues. LD muscle was included in this analysis for comparison.  

Co-expression network. To gain insight into molecular relationships within and between fat 
depots, we used a co-expression approach to build the first exclusively fat depot-based bovine 
network. LD muscle samples were not included here. We filtered the normalised data to leave a 
manageable subset of genes that satisfied at least one of the following criteria: top 10% in terms of 
variability of expression; top 10% most abundant expression; annotated as either a transcription 
factor, cofactor, or chromatin remodeller by (Zhang et al. 2012). Significance of differences 
between genes across depots was determined by PCIT (Reverter and Chan 2008) followed by a 
hard threshold of 0.975. 

 
RESULTS AND DISCUSSION 

Data-driven clustering. Permut matrix software produced a dendrogram of relationships, 
interpretable from the top down. The text labels include breed and tissue. The first major split 
shows the LD was discriminated from the fat samples. The next split shows each fat depot could 
be clearly resolved (Figure 1A). IMF was awarded a unique branch within the fat tree. Inter and 
Omen were most closely related, followed by Kid then SC. 

 
                          A.    B. 

 

Figure 1. A. Hierarchical clustering of gene expression separated depots. B. Bovine fat depot 
co-expression network resolves into 3 major clusters reflecting cellular diversity. 

Co-expression network. The co-expression network (Figure 1B) was visualised in Cytoscape 
(Shannon et al. 2003). We clustered using a Cytoscape algorithm called ‘organic.’ This shortens 
the path length between highly inter-connected genes producing visually coherent representations 
of gene interactions. Overall, it resolved into three major sub networks (Figure 1B) functionally 
enriched for 1) cytoskeletal architecture and metabolism (largest cluster; hypergeometric P-value 
= 7.57e-17) 2) inflammation (top left; P = 3.63e-18) and 3) peptidyl serine phosphorylation (top 
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right; P = 1.34e-4). These major clusters reflect the diversity of cell types which include 
macrophages and other immune cells in addition to adipocytes, pre-adipocytes and endothelial 
cells (Lee et al. 2013). Given the emerging link between inflammation and adiposity (Smorlesi et 
al. 2012), the inflammatory cluster is noteworthy.  Molecules present in these modules display 
highly coordinated changes in expression across depots. The network contained several 
representatives from the three major gene sets previously identified (De Jager et al. 2013) 
representing triacylglyceride (TAG) synthesis (e.g. fatty acid binding protein 4, FABP4), fatty acid 
synthesis (e.g. fatty acid elongase 6, ELOVL6) and PPARG (e.g. acetyl coenzyme A synthetase, 
ACSS2). 

In comparing SC (the most divergent depot) against the other depots we detected extreme DE 
of delta-like 1 homolog (DLK1) and homebox A10 (HOXA10) among others (Figure 2). In 
humans, it has previously been noted that genes regulating early development, including members 
of this family of phylogenetically ancient homeotic (HOX) genes, differ among undifferentiated 
pre-adipocytes between depots (Tchkonia et al. 2007). Similarly, DLK1 has also been described as 
a marker for adipocyte progenitors (Shan et al. 2013). Gene expression clearly detects the presence 
of RNA diagnostic of skeletal muscle in our IMF sample. It is unclear to what extent the muscle 
RNA complicates the marbling adipocyte interpretation. 

 

Figure 2. SC rump versus other fat depots. Oval highlights muscle derived transcripts  

A targeted examination of enzymatic expression profiles across depots informed by known 
differences in tissue phenotypes relating to saturation (SCD), elongation (ELOVL6), TAG 
synthesis (DGAT2), synthetic capacity (ACACA), and acetate (ACSS2) and glucose (MDH2) fuel 
usage highlighted the following possible molecular drivers (Table 1). IMF displays lower 
expression of key lipogenic enzymes in line with, but to a lesser extent than, previous biochemical 
measurements made in cattle and pigs (Bonnet et al. 2007, Gardan et al. 2006).  
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Table 1. Log2 expression of genes encoding rate limiting enzymes of fatty acid composition.  

Gene Enzyme (EC#) Probe IMF Inter Kid Omen SC 
SCD Δ 9 desaturase (1.14.19.1) A_73_P101286 10.49 11.15 11.03 11.01 11.76 
ELOVL6 fatty acid elongase 6 (2.3.1.n8) A_73_119372 10.88 11.44 11.43 11.42 11.54 
ACACA acetyl coA carboxylase (6.4.1.2) A_73_P038926 6.90 7.45 7.41 7.27 7.74 
DGAT2 diacylglycerol O-acyltransferase 

(2.3.1.20) 
A_73_118582 15.86 16.40 16.42 16.34 16.72 

ACSS2 acetyl coenzyme A synthetase 
(6.2.1.1) 

A_73_P037091 13.10 13.77 13.71 13.62 14.01 

MDH2 malate dehydrogenase 2 
(1.1.1.37) 

A_73_P422416 18.42 18.03 18.09 18.04 18.11 

 
CONCLUSIONS 

Biological similarity between fat depots is reflected by shared clusters of some highly co-
expressed genes. Having said this, the 5 bovine depots can be clearly separated by global gene 
expression patterns, in a manner similar to other species. These depot-specific differences reflect, 
in part, the proportion and behaviour of populations of pre-adipocytes coupled with metabolic 
differences such as saturation and lipogenic fuel preference.  
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