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SUMMARY 
  A simulation model is described which has been constructed to address the issue of how true 
underlying genomic architecture might impact on the efficacy of genomic selection. A current 
specific focus of the model is on how epistatic genetic architectures might impact on the added 
value expected from increasing the density of SNP markers. Results to date suggest that genomic 
selection has greater superiority over BLUP genetic prediction under the additive genetic 
architecture simulated relative to an epistatic architecture with similar heritability. While we 
expect marker density to improve accuracy under GBLUP with some additive genetic 
architectures, our simulation results suggest that this may not happen with comparable (in terms of 
narrow sense trait heritability) genetic architectures with epistatic gene action contributing to both 
additive and non-additive genetic variance.  
 
INTRODUCTION 
 The underlying genetic architecture of economically important traits in sheep remains unclear. 
There is a reasonable body of biological evidence (Gianola and de los Campos 2008) that suggests 
interacting genetic loci (i.e. epistatic loci) are a significant source of genetic variation. It is yet to 
be determined how single step genomic selection will perform when epistatic effects among loci 
contribute significantly to underlying additive genetic variation. The genomic best linear unbiased 
prediction (GBLUP) method of genomic selection assumes each SNP marker has an equal effect 
on trait variance and uses information from the genomic relationships between candidates to 
estimate the merit of genotyped candidates as opposed to alternative Bayes methods which use the 
effects of minor and major genes weighted differently. In this study, simulation work was under 
taken to model the application of single step genomic selection methodology to the New Zealand 
sheep industry using a combination of low and high density SNP panels. A set of QTL were 
simulated, and the accuracy of prediction using both conventional BLUP genetic evaluation and 
the single step GBLUP genetic evaluation was compared with and without epistatic genetic effects 
simulated for a single trait in a population resembling a major NZ dual purpose sheep breed. 
 
METHODOLOGY 
 Population and SNP data were simulated using the QMSim software developed by Sargolzaei 
and Schenkel (2009). The parameters used in the simulations are shown in Table 1. These 
parameters were chosen to try and generate a population with similar characteristics to the major 
New Zealand dual purpose sheep breeds. The QMSim software uses a two stage method for 
simulating a population; a historical phase and a recent population phase. The historical phase uses 
random mating over a large number of generations to create linkage disequilibrium and drift in a 
base population. The recent population phase is used to create the desired population structure for 
analysis, no mutation occurs and the allele effects are fixed at the end of the historical phase.  
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Table 1: Parameter estimates for the population simulated using QMSim  

Parameter Value  
Effective population size for the historical phase 4000 
Number of females per male in the historical phase 20 
Number of generations for the recent population 60 
Number of females per male in the recent population 50 
Litter size in the recent population 50% single, 50% twins 
Proportion of male progeny in the recent population 0.5 
Replacement ratio for sires/dams 1.5 yrs/3 yrs 
Number of chromosomes 26 
Marker and QTL mutation rates 2.5 x 10-5 

 
Once the QMSim data were generated, epistatic and purely additive true breeding values were 

simulated for all individuals with marker data available. The additive true breeding values 
(TBVadd) were calculated using the sum of the allele effects provided by QMSim for 100 QTL 
segregating at the end of the historical phase. These QTL had additive effects which were sampled 
from a normal distribution. The epistatic true breeding value (TBVepi) was calculated in a similar 
way. For n pairs of loci with epistatic effects simulated between them n 9x9 matrices of epistatic 
effects for all possible combinations of genotypes were simulated. For a given pair of loci A and B 
each with two alleles (a and A, b and B respectively) a matrix was created as below: 
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Thus, if an individual had the combination of genotypes aa and BB then TBVepi = TBVepi + eaB. 
The epistatic effects e were drawn from a normal distribution. In order to compare genomic 
breeding values based on additive versus epistatic true breeding values, it was necessary to scale 
the variance of the true breeding values so that the additive genetic variance estimated by ASReml 
(Gilmour et al. 1999) was the same for both the epistatic and additive genetic models. i.e. 
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where TBV* is the rescaled TBV, h2 is the desired trait heritability, NTBVσ
is the additive genetic 

standard deviation (narrow sense) estimated by ASReml. Phenotypes were then simulated as    
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where  BTBVσ
is the standard deviation of the original TBVs in the broad genetic sense and δ  is a 

random normal deviate with mean of 0 and standard deviation of 1. In this way, the two different 
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architectures are constructed in such a way that they would appear to be identical when 
undertaking variance component estimation using conventional quantitative genetic analysis. 

A genomic best linear unbiased prediction GBLUP evaluation was run on the phenotypic 
values for both the additive and epistatic traits using the BLUPF90 family of programs (Misztal et 
al. 2002) with a SNP marker file. A traditional BLUP evaluation was also run using ASReml and 
the estimated breeding values from both evaluations were combined with the TBV and phenotypic 
data. Accuracies of genomic predictions were computed as the correlation between the additive 
and epistatic TBVs and their corresponding genomic estimated breeding values (GEBVs).  
 SNP panel densities from 10,000 to 100,000 were simulated, with the accuracies, measured as 
the correlation of the TBVs with the GEBVs and BLUP EBVs, for the different panel densities 
compared. The TBVs were scaled to give an additive genetic variance of 0.3.The number of QTL 
used to generate the additive and epistatic TBV remained constant at 100 for all scenarios. From 
QMSim, the marker data were retained for individuals generated in generations 57 to 60. For a 
training and validation trial, the individuals born in generation 57 had phenotypic data and all 
other individuals had a missing phenotype. Correlations between estimated breeding values and 
true breeding values are reported for animals from generation 60. 
 For all scenarios 20 replicates were run, where replication was performed by using the same 
base population markers and pedigree from QMSim for the 20 replicates, but with a new true 
genetic values for each replicate. Within each replicate, the GBLUP, Bayes Lasso and pedigree 
BLUP methods are applied to the exact same trait data with the same model. 
 
RESULTS AND DISCUSSION 

The accuracy of genomic selection (as indicated by correlations between predicted breeding 
values and true breeding value) exceeded the accuracy of BLUP genetic predictions for animals in 
the validation population which did not have their own phenotypic records (Table 2). BLUP 
genetic predictions appeared slightly more accurate under the additive model than under the 
epistatic model although the difference was not statistically significant. In contrast, genomic 
prediction was much more accurate under the additive model than under the epistatic model. 
Increasing the SNP density from 5k to 100k did not have any meaningful impact on the results 
with these genomic architectures and population structures. 
 
Table 2: Correlations and the standard errors between true and estimated breeding values 
using GBLUP (TBV-GEBV) and traditional BLUP (TBV-EBV) for additive and epistatic 
traits, along with the heritability as estimated by ASReml with the standard error (simulated 
heritability was 0.3 for all scenarios). 
 

Panel Size 
Additive Epistatic 

TBV- GEBV TBV-EBV herit TGV- GEBV TGV-EBV herit 

5k 0.65 (0.004) 0.36 (0.002) 0.38 (0.015) 0.6 (0.009) 0.28 (0.013) 0.3 (0.012) 

10k 0.69 (0.005) 0.43 (0.004) 0.34 (0.012) 0.60 (0.01) 0.26 (0.012) 0.33 (0.012) 

20k 0.75 (0.003) 0.45 (0.003) 0.36 (0.007) 0.62 (0.01) 0.31 (0.01) 0.3 (0.009) 

50k 0.74 (0.002) 0.39 (0.005) 0.32 (0.007) 0.64 (0.009) 0.30 (0.014) 0.3 (0.012) 

100k 0.75 (0.004) 0.49 (0.003) 0.30 (0.011) 0.60 (0.01) 0.33 (0.012) 0.28 (0.012) 

 
 We hypothesise that with further exploration of population structures and genomic 
architectures, we will find situations where increasing marker density will increase the accuracy of 
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genomic predictions under the additive genetic architecture, but they will be less beneficial under 
the epistatic genetic architecture. This is because similarity among relatives due to sharing 
equivalent epistatic gene combinations breaks down much more quickly over successive meiosis 
than similarity due to inheritance of similar additive genetic effects. It is acknowledged that some 
patterns within the results appear inconsistent with the relative small sizes of standard errors. We 
believe that this may be due to replication being undertaken with the same set of SNPs. 
 
CONCLUSION 
 If our hypothesis is confirmed through further work, then new approaches other than GBLUP, 
Bayes predictions, and single step genetic evaluation may be required to capture the full benefits 
from increased marker density when traits whose observed narrow sense heritability is driven by 
epistatic effects. Alternatively, the failure of Bayes methods, and increased marker density to 
meaningfully improve the accuracy of genomic selection in many practical situations tested to 
date, could be further evidence that epistasis is an important contributor to observed heritability in 
livestock populations. The alternative theory of many genes with very small effects has led to 
considerable, but so far fruitless, efforts to use increasingly dense marker chips to improve 
genomic selection both within and across breeds beyond what can be achieved with moderate 
density chips (e.g. 50k). 
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