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SUMMARY 

Genome wide association studies in livestock and in humans typically find many SNPs of 
small effect and intermediate allele frequency associated with each quantitative trait. This is in 
contrast to theories that predict most variance to be due to rare alleles of large effect. This paper 
reports a computer simulation of the evolution of a quantitative trait under the effects of mutation, 
selection and genetic drift. The simulation can approximate the experimental findings but only by 
assuming that there are >1,000,000 sites at which mutation can affect a typical trait, mutation at 
these sites is much more likely to cause an allele of small effect than of large effect and selection 
against the mutant allele increases more than linearly with the size of the mutation’s effect on the 
quantitative trait. Thus the experimental results are consistent with the theory for the control of 
genetic variation in quantitative traits at least under these assumptions. 

 
INTRODUCTION 

Quantitative or complex traits are important in agriculture, medicine and evolution but we have 
no good understanding of the forces that control genetic variation in these traits. Most theories 
explaining quantitative genetic variation assume that it is controlled by a balance between 
mutation, which creates new variants, and selection which eliminates these mutant alleles. 
Consequently, most versions of this theory predict that the genetic variance will be mainly due to 
rare mutations of large effect (eg Eyre-Walker 2010).  

Until recently we had little knowledge of the genes that cause variation in quantitative traits 
and so this prediction was difficult to test. However, in the last 6 years assays for thousands of 
genetic markers or single nucleotide polymorphisms (SNPs) have become available for livestock 
and humans and this has allowed a new type of experiment known as a genome wide association 
study (GWAS). In a GWAS, individuals are measured for a trait and genotyped for thousands of 
SNPs. Then the SNPs are searched for those that are significantly associated with the trait. A SNP 
that is significantly associated with the trait is assumed to ‘tag’ a nearby mutation that causes 
variation in the trait because it is in linkage disequilibrium (LD) with this causal mutation (or 
quantitative trait locus, QTL). GWASs typically find many SNPs with small effects and 
intermediate allele frequencies but very few with large effects. This seems to contradict the theory 
that predicts that most of the variance will be due to rare mutations of large effect. In this paper I 
consider how the theory and the experimental results can be reconciled by using a computer model 
which simulates the evolution of a quantitative trait. 

The simulation requires inputs concerning the number of mutations that can affect a typical 
quantitative trait, the size of their effects and the selection to which they are subject. Prior to the 
era of GWASs, some relevant information about the genetic architecture of quantitative traits was 
available. The variance added each generation by mutation is in the range 0.001 to 0.01 times the 
environmental variance (Ve) for most traits studied. This variance could be due to many mutations 
of small effect or few mutations of large effect or a mixture of both. In mice, many experiments 
have been reported in which a gene is ‘knocked out’ or replaced by an inactive form. As many as 1 
in 3 of these knock outs affect body size (Reed et al. 2008). If this applies to most quantitative 
traits, it implies that over 5000 genes can affect each trait. Some mutations do have a large effect 
on a quantitative trait. For instance, mutations in the gene FBN1 in humans can cause Marfan’s 
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syndrome which includes a large increase in height. Over 500 different mutations in FBN1 cause 
Marfan’s syndrome (Kemper et al. 2012). FBN1 may be unusual, but if even 200 mutations can 
cause a large change in height, it is likely that even more mutations can cause a small effect on 
height. Therefore, it seems reasonable to expect that at least 5000 x 200 = 1,000,000 different 
mutations might affect a trait such as height.  

It is usually assumed that natural selection favours an intermediate value for many quantitative 
traits. That is, individuals with extreme phenotypes are less fit than individuals with intermediate 
phenotypes. It is also likely that some mutations, which affect a quantitative trait, are detrimental 
regardless of their effect on phenotype for a particular quantitative trait. Zhang and Hill (2002) call 
this model of selection a joint effect model because it combines stabilising selection directly on the 
trait with selection directly against a deleterious mutation, and it is a joint effect model of selection 
that I have used in the simulation. 

In this paper I compare GWAS results for weight in cattle with a simulation of the evolution of 
a quantitative trait under the influence of mutation, selection and genetic drift. The aim is to find a 
theory for the control of genetic variation in quantitative traits that is consistent with experimental 
GWAS results. 

 
MATERIAL AND METHODS 

GWAS. Bolormaa et al. (2013) analysed data from the Beef CRC on 6000 animals that were 
measured for post weaning weight and had genotypes for 700,000 SNPs. The method of analysis 
was called “BayesR’ by Erbe et al (2012) and it fits all the SNPs simultaneously. The effects of the 
SNPs are assumed to be random variables drawn from a mixture of 4 normal distributions. The 4 
distributions are such that SNPs in each of the distributions explain on average either zero, 0.0001, 
0.001 or 0.01 of the genetic variance of the trait. The analysis used a Gibbs sampling chain and in 
each cycle the number of SNPs in each of the 4 distributions was counted. In this way the 
distribution of SNP effects and the variance they explain was estimated. The distribution of 
variances explained was compared to the simulation results. 

Simulation. The computer simulation assumed a constant population size of 10,000. Each 
generation gametes are formed by recombination between the paternal and maternal gametes of the 
parent. Mutations occur in these gametes at a rate of 10-8 per site and there are 106 sites in the 
genome where mutation affects the trait. The effect of each mutation is drawn from a gamma 
distribution with a shape parameter of 0.1 and a scale parameter such that the variance added by 
mutation each generation is 0.001 times the environmental variance. The effect of the mutation is 
negative in a random 50% of cases. The parents mate at random and the offspring are subject to 
selection. The fitness of each offspring is obtained by multiplying together a fitness due to 
stabilising selection and a fitness which is constant for the mutation. The fitness from stabilising 
selection is exp(-0.5 y2/Vs) where y is the phenotype in environmental standard deviations and Vs 
is 200Ve. The constant fitness component of a mutation is 1-s where s = 0.8 x2 where x is the 
effect of the mutation on the trait in units of environmental standard deviations. After the 
simulation reaches an equilibrium state it is run for 1000 generations and the number of mutations 
segregating, their effects sizes and allele frequencies recorded each generation. 

 
RESULTS  

In the simulation, the effect of a mutation is drawn from a gamma distribution with shape 
parameter of 0.1. This is a distribution with many very small effects but a long tail of larger effects 
(Fig 1). Although mutations of large effect (eg. > 1 standard deviation) are rare they explain most 
of the mutation variance (Fig 1). However, mutations of large effect are strongly selected against 
and so they are kept rare and eventually eliminated by natural selection. Eventually when an 
equilibrium is reached, as much variance is lost each generation by genetic drift and selection as is 
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added by mutation. At this point the heritability of the trait was 0.33. Table 1 gives the distribution 
of mutation effects when an equilibrium state has been reached. Table 1 shows that mutations 
explaining less than 0.0001 of the total variance are common and mutations explaining more than 
0.1 of the variance are rare. 

The simulation includes the mutations that cause variation in the trait and these have been 
counted in Table 1 regardless of their allele frequency. However, a GWAS is based on SNPs that 
are not the causal variants but are hopefully in LD with them. Most of the SNPs on commercial 
SNP ‘chips’ such as used in our cattle GWAS, have a minor allele frequency (MAF) in the range 
0.1 to 0.5. Therefore a causal mutation with MAF <0.1 cannot be in complete LD with a SNP with 
MAF > 0.1 and so the SNPs will underestimate the true effect of the causal mutation. The most 
optimistic assumption would be for causal mutations with MAF > 0.1 to be in complete LD with 
one of the SNPs and for causal mutations with MAF = q <0.1 to be in LD with a SNP that explains 
a fraction q/0.1 of the variance explained by the causal mutation. When this assumption is used to 
calculate the number of SNPs in each variance class (Table 1) the number of SNPs explaining 
>0.01 of the variance is much less than the number of causal mutations because many of these 
mutations are rare and hence incompletely detected by the SNPs. Consequently, the number of 
SNPs explaining <0.0001 of the variance is more than the number of causal mutations because it 
includes some causal mutations that explain a greater variance but are incompletely ‘tagged’ by 
the SNPs.  

The BayesR analysis of weight in cattle provides a distribution of the effects of SNPs on 
weight. The distribution has been summarised (Table 1) by calculating the number of SNPs that 
fall into each proportion of variance class. The results are broadly similar to those predicted by the 
simulation model but the real data has even more SNPs explaining <0.0001 of the variance than 
predicted by the simulation. 

 
Table 1. Number of segregating sites in the computer simulation and number of SNPs in the 
Bayes R analysis of cattle weight classified by the proportion of genetic variance that they 
explain. 
 

Proportion of 
variance explained 

Number of causal 
sites in simulation 

Number of simulated 
SNPs 

Number of SNPs 
from BayesR 

< 10-4 1466 1562 3166 
10-4 to 10-3 190 161 1492 
10-3 to 10-2 145 91 52 
10-2 to 10-1 21 8 5 
> 10-1 0.3 0 0.05 

 
DISCUSSION 

The simulation parameters might be regarded as extreme in certain respects. For instance, I 
assumed 1,000,000 sites in the genome affect a typical trait when mutated, that the distribution of 
their effects is very leptokurtotic (ie has a long tail) and that selection against mutations rises with 
the effect of the mutation squared. These assumptions all act to increase the importance of SNPs 
with small effects and decrease the number of SNPs with large effects when an equilibrium is 
reached. Despite this, the simulated data has fewer SNPs of small effect than the real data on cattle 
weight. To mimic the real GWAS results more closely the simulation would need to assume that 
>1,000,000 sites in the genome affect a typical trait when mutated. Thus the true parameters may 
be even more extreme than those assumed in the simulation. 
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If the theory of Eyre-Walker (2010) is applied to the parameters assumed in the simulation it 
also predicts that most of the variance is due to mutations of small effect. However, most authors 
have ignored this conclusion perhaps because they regarded the input parameters to be too extreme 
to be realistic. The conclusion of this paper is that they are not extreme enough. 

Qualitatively the simulation matches an important feature of real data on quantitative traits. 
Mutations of large effect ( > 2 standard deviations) occur for many traits. For instance, mutations 
causing dwarfism are known in many species but they are usually kept rare by natural selection so 
that they explain little of the total genetic variance. 

The simulation results make a prediction with important practical consequences. The 
simulation predicts that there are a number of QTL segregating that explain > 1% of the variance 
but which go undetected by GWAS because their MAF is too low. This could explain the ‘missing 
heritability’ discussed in human genetics (Yang et al. 2010) and in cattle (Haile-Mariam et al. 
2013). If this is indeed the case, the use of genome sequence data instead of SNP genotypes or 
haplotypes of SNPs should lead to the discovery of more QTL of medium size effects and their 
exploitation in genomic selection. 

 

 
 
Figure 1. Distribution of the effects of mutations (series 1) and  the mutation variance 
explained (series 2) by mutations of different size measured in units of environmental 
standard deviations. 
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