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SUMMARY 
The paper describes a method implemented in ASReml for estimating genomic breeding 

values and marker effects distributed according to a t distribution from a large panel of SNP 
markers.  The method is similar to the MCMC Bayes-A method.  It estimates effects in the 
individual animal space and back-solves to obtain the marker effects.   

 
INTRODUCTION 

With the increasing availability of SNP panels for genotype characterization comes the 
challenge of how best, or at least effectively, to utilize them.  Two emphases are common; first to 
predict breeding values, using the markers to define genetic relatedness more accurately than by 
using expected average relatedness as predicted from a pedigree, and second to identify loci 
(markers) of large effect hoping that the large effect is due to a nearby major gene (QTL). 

Meuwissen et al. (2001) proposed several approaches including methods called GBLUP and 
Bayes-A.  The basic marker model is y = Xb + Mg + e where marker scores (M) are used to fit 
random marker allele effects (g) with a common variance σ2

g.  This is equivalent to using the 
genomic relationship matrix we write as G = MDM' used in place of the Numerator Relationship 
matrix in the animal model to produce GBLUP (u) where M is the matrix of (centred) marker 
scores (0/1/2) and D=diag(1/s), s = Σ 2pi(1-pi) and pi is the proportion of the minor allele for 
marker i  (Stranden and Garrick, 2009).  The animal model formulation is generally more tractable 
because the number of markers typically far exceeds the number of animals.  The link is that u = 
Mg and g = M'G-1u. In the mixed model equations, G is scaled by a variance parameter which is 
related to the marker variance component: σ2

u=sσ2
g.   

However, it is likely that markers are not equally informative, that they have diverse variances.    
The Bayes-A model assumes a scaled inverse Chi-square distribution for the individual marker 
variances implying a t distribution for the marker effects and uses Markov chain Monte Carlo 
techniques to estimate the marker effects.   Sun et al. (2012) propose an EM method based on the 
GBLUP model but where D, initialized at diag(1/s), is updated each iteration using the estimated 
marker effects as D = diag(g*g + (k-2)σ2

g)/(k+1) where  k  is the degrees of freedom of the Chi-
square distribution and  σ2

g is the marker variance assumed known.  The idea here is that if we 
assume a scaled inverse Chi-square distribution for the marker variances, we can estimate those 
variances using the estimated marker effects and the scale parameter. We then use the estimated 
marker variances as weights for the marker covariables and reform G. That is then used in the 
mixed model equations to re-estimate the marker effects. This paper describes an implementation 
of this method in ASReml (Gilmour 2013).   The method is called Fast Bayes-A (FBA). 
 
MATERIALS AND METHODS 

Data Set The method is demonstrated on a simulated data set (Szydlowski and Paczyńska, 
2010) comprising marker scores for 10031 markers on 3226 animals, 2326 of which have 
phenotype and all of which have 'true' breeding values.  The data is supplied in a marker file and a 
phenotype file.  The phenotypic variance for this data is 100.6.   
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Three Models 
For M, σ2

u =sσ2
g, g and k as defined above, we define three forms of the genomic relationship 

matrix G=MDM’ where D is a diagonal matrix of relative variances used to weight each marker:  
GBLUP: D is diag(1/s), G formed once. 
FBA-F: D is diag(g*g/σ2

u + (k-2)/s)/(k+1), G reformed each iteration with σ2
u fixed 

FBA-G: D is diag(g*g/σ2
u + k/s)/(k+1), reformed each iteration with σ2

u updated.   
The animal model is then fitted using the G matrix and marker effects (g) are predicted from 

the animal effects.  For GBLUP and FBA-G, the genetic variance (σ2
u ) is estimated; for FBA-F it 

must be held fixed.  FBA-F is the model described by Sun et al. (2012) but with D multiplied by 
the σ2

u rather than applying σ2
u as a scale factor for G. Further, Sun et al. (2012) used the σ2

u 
estimated from the GBLUP (equal marker variances) model as the known prior variance.  

The difference between FBA-F and FBA-G is that σ2
u is estimated in the latter, and is scaled 

according to the RHS constant in the expression D.  So, if s is set to one, the variance parameter is 
related to the marker variance σ2

g, not the genetic variance; using k-2 instead of k results in a value 
k/(k-2) larger; use of k/s results in a variance estimate comparable to the GBLUP value. 

Meuwissen et al. (2001) used a value of k close to 4 which pulls the  marker variances toward 
(k-2)/(k+1)=0.4 of the average value under GBLUP.  The distribution is less skewed under the 
FBA-G model and so it does not follow the nominal inverse Chi-square distribution. 

Models fitted. These three models were fitted to the simulated data and the FBA models 
evaluated with k at 4.2, 3.8 and 3.5.  The FBA-F model was fitted assuming the variance ratio 
(Genetic/Residual) obtained from the GBLUP fit, although it could have easily been evaluated 
with σ2

u =44.0.  The FBA models identify a few markers of large effect and we examine the 
impact of fitting 4 of these as fixed covariates (putative QTL). 

 
RESULTS 

The primary results are summarized in Table 1.  For the GBLUP model, the genetic variance 
(ratio) was estimated at 44.03 (0.808) corresponding to a marker variance component of 0.01177 
and the Log Likelihood was -6077.5.  The largest marker effect was -0.165 for marker 4480.  

The number of markers having a large effect was strongly influenced by the value of k, with 
large consequent jumps in the Log Likelihood.  However, further reducing k to 3.2 gave a poorer 
fit, especially for the FBA-F model (values not given).  From these and other models fitted, we see 
a jump in Log likelihood for each marker of large effect identified: -6049, -6033, -6012, -6007 for 
1, 2, 3 and 4 markers with large effect.  Each large marker is effectively fitted as a fixed effect 
(having a relatively large individual effect variance).    

The marker variances are less skewed under FBA-G than FBA-F and so fewer large markers 
are detected for a given value of k. Indeed a plot of marker effects with variance fixed and k=3.8 
against marker effects estimated when the variance is estimated and k=3.5 shows very close 
agreement except for the 2 largest effects which are 20% larger under the latter model (Figure 1). 

The accuracy is the correlation between the BLUP values predicted for the 900 individuals 
without data and the ‘true’ breeding values of these individuals.  It increases with increasing Log 
Likelihood.   

Having identified markers of large effect, these can be fitted as separate covariates.  Table 2 
shows the Wald F statistics and effects of the 4 markers having largest effect; they explain 40% of 
the genetic variance.  Markers 952 and 954 are neighbours and each is as effective as the other 
when fitted singly but they also complement each other. 
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Figure 1. Comparison of marker effects estimated with k=3.8 and fixed known variance with 
values estimated with k=3.5 and genetic variance estimated (ignoring 4 markers of large 
effect). 
 
Table 1. Comparison of model statistics from the GBLUP model and for the Fast Bayes-A 
like model for 3 levels of degrees of freedom and holding the variance ratio fixed, or 
estimating it.  
 
Degrees of 
freedom (k) 

LogL Residual 
Variance 

Genetic 
Variance 

Accuracy 
 

Large Markers 
 

GBLUP -6077.5 54.5 44.0 0.611  

FBA-F Genetic Variance ratio fixed at 0.808 

4.2 -6042.6 57.9 46.8 0.635 954/4480 

3.8 -6008.1 52.5 42.4 0.656 952/954/4480/5488 

3.5 -5995.9 52.0 42.0 0.659 145/952/954/ 
2719/4480/5488 

FBA-G Genetic Variance estimated 

4.2 -6050.3 53.7 49.7 0.636 4480 

3.8 -6033.0 53.9 43.4 0.645 954/4480 

3.5 -6004.3 53.8 44.6 0.655 952/954/4480/5488 
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Table 2. Wald F statistics and fixed effects for 4 markers of large effect in a GBLUP model 
where the genetic variance was estimated at 26.35 and residual variance at 54.17.  The 
Incremental (Marginal) F reflects the variation explained as markers are added in order 
(after all others). 

 
Source Incremental F Marginal F Fixed Effect 
snp(952) 55.84 12.80  2.24 ± 0.63 
snp(954) 14.42 12.90 -2.19 ± 0.61 
snp(4480) 60.69 61.51  3.50 ± 0.45 
snp(5488) 46.57 46.57 -3.33 ± 0.49 

 
DISCUSSION 

ASReml has been widely used for fitting GBLUP models where users have supplied the G 
matrix.  Now it can directly make a common form of the G matrix, and report marker effects as 
well as animal effects. 

The Bayes-A like models give a better fit to the genetic relationship matrix than the GBLUP 
model, as indicated by the Log likelihoods, and identify markers of large effect. The number of 
large effects identified is related to the peakedness of the t distribution which is controlled by the 
degrees of freedom, k.  There is currently no formal method to choose a value for k in this 
implementation.  Sun et al. (2012) used 4.2 but 3.5-3.8 seems more appropriate here.   

The GBLUP model runs much faster than the FBA model because the G matrix is only formed 
and inverted once whereas in the FBA model it must be formed and inverted each iteration, 
increasing the time in this example from 40s to 180s per iteration.  Therefore, it will generally be 
more efficient to follow the path Sun took and estimate the genetic variance under the GBLUP 
model and then use that value as the fixed prior for the FBA-F model. Furthermore, the FBA runs 
typically required from 20 to 40 iterations for the marker effects to stabilize while the GBLUP run 
took about 8 to 10 iterations to estimate the variance parameters.  

ASReml can fit identified markers as separate (fixed or random) effects.  Including the 4 
markers identified in the FBA-F model with k=3.8 as fixed effects and estimating the remaining 
genetic variance under the GBLUP model produced an estimate 40% lower than obtained in the 
original GBLUP model. 

The FBA implementation is restricted to a single marker matrix on a single trait but the G 
matrix formed can be saved for use in more complex models. 
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