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SUMMARY 

Examples of traits related to feed resource efficiency are residual feed intake (RFI) and 
methane (CH4) emission. In an experimental dataset of 588 heifers, we showed that it is possible to 
decrease CH4 emission (predicted on dry matter intake (DMI) and ration) by selecting more 
efficient cows (genetic correlation of 0.3). Feed efficiency phenotypes are difficult and expensive 
to measure on a large scale, but genomic selection is a promising tool to make progress in breeding 
resource efficient cows, since it relaxes the need for information on performance of all animals. 
Using genomic selection, a reduction in predicted CH4 in the order of 15% in 10 years is 
theoretically possible. To double this genetic gain, a large reference population is needed. 
Therefore, an international collaboration between 9 countries in Europe, US and Australiasia is set 
up to assemble data on >6,000 cows with high quality phenotypes and genotypes. The next step is 
to predict the genomic breeding values with this extended dataset, and report the accuracies. This 
way, a combined approach, including feeding, management and genetic selection, can be set up, 
which is likely to be the best approach to successfully improve feed resource efficiency. 
 
OVERALL INTRODUCTION 

Climate change is a growing international concern and it is well established that the release of 
greenhouse gases (GHG) is a contributing factor. The general aim of the Kyoto protocol is to 
reduce GHG emissions by 20% by the year 2020 relative to 1990 levels. The global livestock 
sector, particularly ruminants, contributes approximately 18% of total anthropogenic GHG 
emissions (Steinfeld et al. 2006). One way to reduce the environmental impact of dairy cattle is to 
improve their resource efficiency. Examples of traits related to feed resource efficiency are dry 
matter intake (DMI), residual feed intake (RFI), and methane (CH4) emission. This paper provides 
genetic parameter estimates for feed resource efficiency traits, and examines the value of creating 
an international data set for these traits. 
 
GENETIC PARAMETERS FOR FEED RESOURCE EFFICIENCY TRAITS 

Introduction. Nutritional and microbial opportunities to reduce CH4 emissions have been 
extensively researched, but there is little knowledge regarding the use of natural variation to breed 
for animals with lower CH4 yield (Wall et al. 2010). Measuring CH4 emission rates directly from 
animals is difficult and hinders direct selection on reduced CH4 emission. However, improvements 
can be made through selection on associated traits (e.g. RFI (Verbyla et al. 2010)), or through 
selection on CH4 predicted from feed intake and diet composition (de Haas et al. 2011). 

Aim. The objective of this study was to quantify phenotypic and genetic variation in RFI and 
predicted CH4 emission (PME), and to examine the potential use of genomic selection to facilitate 
the inclusion of resource efficiency phenotypes in selection programmes (de Haas et al. 2011). 
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Material and methods. Data from previous experiments were used, and records on daily DMI, 
weekly live weights and weekly milk productions were available from 588 heifers (Veerkamp et 
al. 2000). RFI (MJ/d) is the difference between net energy intake and calculated energy 
requirements for maintenance as a function of live weight and for fat and protein corrected milk 
production. PME (g/d) is 6% of gross energy intake (method of International Panel on Climate 
Change (IPCC)) corrected for energy content of methane (55.65 kJ/g). All heifers were genotyped 
using the Illumina 50K SNP panel (54,001 SNP in total; Illumina, San Diego, CA). Genetic 
parameters were determined using a random regression sire-maternal grandsire model in 
ASREML (Gilmour et al. 2009). Effects of SNPs were estimated using Bayesian stochastic search 
variable selection (SSVS; (George and McCulloch 1993)). Genomic breeding values were 
predicted for these heifers using a model that included the genotypic information. A polygenic 
model was used to estimate breeding values using only pedigree information. A 10 fold cross-
validation approach was employed to assess the accuracies of the two sets of predicted breeding 
values by correlating them with the phenotypes. 

Results and discussion. The estimated heritabilities for PME and RFI were 0.35, and 0.40, 
respectively (Table 1). Both heritability estimates fit well in the range recently reviewed by Berry 
and Crowley (2013). PME has not been analysed before, but it can well be compared with DMI. 
 
Table 1. The estimated heritability (on diagonal), phenotypic (above diagonal) and genetic 
correlation (below diagonal) for residual feed intake (RFI) and predicted methane emission 
(PME). The corresponding standard errors are shown in parentheses 

 RFI PME 
Residual feed intake (RFI) 0.40 (0.11) 0.72 (0.08) 
Predicted methane emission (PME) 0.32 (0.06) 0.35 (0.12) 

 
The positive genetic correlation between RFI and PME indicated that cows with lower RFI have 
lower PME as well. Hence, it seems possible to decrease methane production of a cow by selecting 
more efficient cows, and the genetic variation suggests that reductions of the order of 11 to 26% in 
10 years are theoretically possible, and in a genomic selection program even higher (de Haas et al. 
2011). For both feed resource efficiency phenotypes (RFI and PME) the genomic model produced 
breeding values with reliability double, or even triple, that of the breeding values produced by the 
polygenic model (Table 2). No other studies have published accuracies of genomic predictions of 
these new traits, but achieved accuracies were lower than theoretically expected accuracies 
(Daetwyler et al. 2010). 
 
Table 2. Reliabilities of estimated breeding values (EBV) based on pedigree information 
only, and direct genomic values (DGV) based on both pedigree and marker (SNP) 
information for residual feed intake (RFI) and predicted enteric methane emission (PME) 
 

 RFI PME 
Pedigree 0.14 0.04 
Pedigree + SNP 0.27 0.14 

 
ADDED VALUE OF INTERNATIONAL COLLABORATOIN – A FIRST ATTEMPT 

Introduction. A number of countries have started to record DMI data, but not enough records 
are available to get accurate breeding values for this trait to be used in their national breeding 
programme. One way to obtain estimated breeding values (EBVs) in a population is to use 
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genomic selection, where phenotypes, e.g., DMI, are measured in a subset of the population and 
genomic predictions are calculated for other animals that have genotypes, but no phenotypes. 
While this approach is appealing, allowing selection for improved efficiency, the size of the 
reference populations from which the genomic prediction equations are derived are currently too 
small within each country to achieve satisfactory levels of accuracy of genomic breeding values 
(Verbyla et al. 2010). One way to increase the accuracy of the genomic prediction is to combine 
datasets from multiple populations. Challenges when combining phenotypes from several 
countries include genotype by environment (GxE) interactions and differences in trait definitions. 
A multi-trait model can handle traits that are measured in different environments as separate traits, 
and therefore treat both the GxE interaction and differences in trait definitions properly.  

Aim. The aim of this study was to estimate the accuracy of genomic prediction for DMI, when 
analysed together in a single-trait run, or in a multi-trait run, using both Australian data on 
growing heifers and European data on lactating heifers (de Haas et al. 2012).  

Material and methods. In total, DMI records were available on 1801 animals; 843 Australian 
(AU) growing heifers with records on DMI measured over ±70 days at 200 days of age (Williams 
et al. 2011, Pryce et al. 2012), 359 Scottish (UK) and 588 Dutch (NL) lactating heifers with 
records on DMI during the first 100 days in milk (Banos et al. 2012, Veerkamp et al. 2012). The 
genotypes used in this study were obtained from the Illumina Bovine 50k chip. The AU, UK and 
NL genomic data were matched using the SNP name. Quality controls were applied by carefully 
comparing the genotypes of 40 bulls that were available in each dataset. This resulted in a total of 
30,949 SNPs being used in the analyses. Genomic predictions were estimated with genomic 
REML (G-REML), using ASReml (Gilmour et al. 2009). The accuracy of genomic prediction was 
evaluated in 11 validation sets. The reference set (where animals had both DMI phenotypes and 
genotypes) were either within AU or Europe (UK and NL), or with a multi-country reference set 
consisting of all data except the validation set.  

Results and discussion. When DMI for each country was treated as the same trait (i.e., 
univariate analysis), using a multi-country reference set (uni-multi) increased the accuracy of 
genomic prediction for DMI for UK, compared to the accuracy achieved with a univariate analysis 
with the national reference set. The accuracy did, however, not increase for AU and NL (Table 3).  
 
Table 3. The average of the approximated accuracy (and corresponding standard error) of 
genomic prediction of dry matter intake (DMI), calculated as the correlation between 
genomic breeding value (GEBV) and the true breeding value (TBV), estimated in a 
univariate, bivariate or trivariate run between Australia (AU), Europe (EU), United 
Kingdom(UK) and the Netherlands (NL), where “uni within” refers to the current situation 
with a national reference set. In all other analyses, a multi-country reference set was taken 
consisting of all data except the validation set. 
 

Country uni within uni multi bi: AU-EU tri: AU-UK-NL 

AU 0.378 (0.027) 0.336 (0.046) 0.388 (0.041) 0.389 (0.042) 
EU 0.313 (0.050) 0.323 (0.051) 0.322 (0.048) 0.330 (0.049) 
UK 0.301 (0.042) 0.333 (0.059) 0.315 (0.048) 0.332 (0.032) 
NL 0.326 (0.098) 0.312 (0.093) 0.329 (0.092) 0.328 (0.094) 

 
Extending the model to a bivariate (AU-EU) or trivariate (AU-UK-NL) model increased the 
accuracy of genomic prediction for DMI in all countries (de Haas et al. 2012). Highest accuracies 
were estimated for all countries when data was analysed with a trivariate model, with increases of 
up to 5.5%. 
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This first attempt has shown that it is worthwhile setting up an international collaboration and 
sharing data, but the increase in accuracy was not enough to get accurate breeding values for this 
trait to be used in their national breeding programme. Therefore, an initiative has started to 
combine DMI data from 9 countries in Europe, US and Australiasia. Pooling DMI data across 
countries can establish if this is a viable way to estimate genomic prediction equations that give 
breeding values with sufficient accuracy, so that these can be used for demonstration by the 
collaborators in the project. First results of this collaboration are expected late 2013. 
 
OVERALL CONCLUSIONS 
Examples of traits related to feed resource efficiency are residual feed intake (RFI) and methane 
(CH4) emission. Our studies on national data have shown that genetic solutions to improve these 
feed resource efficiency traits is possible. However, international collaboration to assemble data on 
more cows will improve the accuracy and genetic gain. A combined approach, including feeding, 
management and genetic selection, can then also be set up, which is likely to be the best approach 
to successfully improve resource efficiency. 
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