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SUMMARY 

Reproduction traits generally are expressed later in life and have high economic value, which 
makes them good candidates for improvement through genomic selection.  We derive genomic 
prediction equations for number of lambs weaned (NLW) from genotyped rams’ daughter records 
and repeated ewe records for genotyped ewes to make the best use of all available information.  In 
order to assess the accuracy of the genomic estimated breeding values (GEBV) for this trait, an 
across sire family cross-validation design is proposed, and was compared with fully random cross-
validation.  The accuracy of genomic BLUP (GBLUP) using both ram and ewe records is 
compared with GBLUP using only ewe records,  as well as BLUP with no genomic information 
using both ram and ewe records.  The combined approach resulted in higher accuracies than both 
GBLUP only using ewe records, and BLUP.  The approach provides a way to make use of all data 
available to maximise accuracy of GEBVs for traits such as NLW. 
 
INTRODUCTION 

Although reproduction traits, such as number of lambs weaned (NLW) have a high economic 
value, they are difficult to genetically improve, due to low heritability (h2) and because they are 
expressed later in life.  Genomic prediction may increase genetic gain in these traits because it can 
predict a ram or ewe’s performance early in life with, potentially, a higher accuracy than Best 
Linear Unbiased Prediction (BLUP).   

Genomic prediction makes use of a reference population in which animals are both genotyped 
and phenotyped to predict genomic estimated breeding values (GEBV) of selection candidates 
(e.g. young rams) based only on genotype.  The individuals available with both genotypes and 
phenotypes are primarily ewes with repeated NLW records in large research projects.  In addition, 
genotyped industry rams have daughters with NLW records.  Combining these two sources of 
information should make optimal use of the data available.  However, each source needs to be 
properly weighted to account for the differences in phenotype accuracy. 

The aim of this paper was to compare strategies for combining daughter information on 
genotyped rams with individual repeated observations on genotyped ewes in a reference 
population for NLW genomic predictions.  Accuracy of the resulting GEBV was assessed with a 
number of different cross-validation strategies. 
 
METHODS 

Phenotypes, genotypes and estimates of heritability and repeatability.  Proper weighting of 
ewe and ram records in this combined genomic prediction approach required the estimation of h2 

and repeatability (t).  Data on NLW from years 1992 to 2012 were retrieved from the Australian 
Sheep Genetics database, giving 290,636 records on 244,672 ewes, where 111,572 ewes had a 
known sire (8,036 sires). The number of progeny per sire ranged from 1 to 339.  The phenotype 
data included 53 breeds and each animal’s breed proportions were calculated from the pedigree.  
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The main breeds were Merino (MER), Border Leicester (BL), Coopworth, Polled Dorset and 
White Suffolk.  Values for h2 and t were estimated using y = Xb + Z1Qq + Z1a + Z2pe + e ,  
where y is a vector of phenotypes, X, Z1, and Z2 are design matrices, b is vector of fixed effects, q 
is a vector breed effects, a is a vector of animal effects, pe is a vector of permanent environmental 
effects, and e is the vector of random errors. The following distributions were assumed: a ~ N (0,

2
aσ A), q ~ N (0, 2

qσ I), and e ~ N (0, 2
eσ I), where A is the numerator relationship matrix, 2

aσ  is 

the genetic variance, 2
qσ  is the variance of breed effects, and 2

eσ  is the residual variance. Fixed 
effects included the mean, conception site, lambing site, year of lambing, age at lambing, 
conception method, and an indicator of whether a ewe lambed as a yearling.  

A subset of the animals were genotyped using the Ovine50K SNP chip comprising a total of 
54,977 single nucleotide polymorphism (SNP).  The genotype quality control and imputation of 
sporadic missing genotypes is described in Daetwyler et al. (2012) and reduced the number of 
SNP to 48,599.   The final multi-breed reference population included 4114 animals (of which 317 
were rams), including 2,205 MER, 788 BL, 486 from terminal breeds, 185 other maternal breeds, 
185 other MER type breeds, and 283 of unknown breed.  The genotyped ewes originated from the 
Sheep CRC information nucleus and the SheepGENOMICS project (van der Werf et al. 2010; 
White et al. 2012).  Results are reported for the MER and BL breeds and their crosses, as they 
made up the majority of genotyped animals. 

Trait and daughter trait deviations.  The phenotypes for NLW used in GBLUP analyses 
were trait deviations (TD) for ewes and Daughter Trait Deviations (DTD) for rams. The phenotype 
was corrected for fixed effects using the same model applied to calculate heritability and 
repeatability but excluding the animal effect.  The residuals (corrected phenotype) were used to 
calculate TD and DTD. Trait deviations are calculated as TD = Σ(residual)/N, where N is the 
number of records. Rams DTD are calculated only from their ungenotyped daughters’ TD: DTD 
=Σ(TD)/p, where p is the number of progeny per ram. Genotyped ewes are included in reference 
population and not used in their ram’s DTD to avoid double counting.  Rams with less than 3 
progeny were removed.  The number of records contributing towards genotyped ewe TD and ram 
DTD was 6066 and 9213, respectively, demonstrating that adding the sire DTD more than doubled 
the reference population.  DTD contain only the genetic merit of the sire, thus DTD was doubled 
for analysis.  The TD and DTD were weighted in the model to account for the differential accuracy 

of phenotypes using ( ) [ ]( )( )[ ] 12122 )1(11
−− −−++− hntnchh ii and ( ) [ ][ ] 11222 )4(1

−−−+− iphchh , 
respectively, where ni is the number of records for animal i, c is the proportion of the genetic 
variance not captured by the markers, and p is the number of progeny for ram i (Garrick et al. 
2009).  Five different values of the c (0.25, 0.35, 0.50, 0.60 and 0.75) were used for calculating 
weights of TD and DTD. 

Genomic prediction analysis.  Genomic BLUP (GBLUP) was used to predict GEBVs and 
BLUP was used for predict estimated breeding values (EBV). GEBVs were calculated based on 
the following model: y* = 1𝛍+ 𝐗𝐛 + Zg + e , where y* is a vector of TD and DTD, 1 is a vector 
of ones, µ is the mean, b is vector of fixed effects and included sex, X and Z are design matrices, e 
is the vector of random errors, and g is a vector of either GEBVs or EBVs.  In GBLUP, g  it is 
distributed as N (0, 2

gσ G), where σg
2 is the genetic variance explained by the markers and G is the 

genomic relationship matrix (Yang et al. 2010). All models were run in ASReml.  
Measuring accuracy with cross-validation.  Cross-validation, where the data is divided into a 

number of subsets and each subset is predicted once from the other subsets, was used to estimate 
accuracy of GEBVs.  The six subsets for cross-validations were chosen either completely random 
or by random whole sire family.  In random sire family cross-validation, sires were randomly 
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allocated to subsets.  All progeny of a sire (both genotyped and ungenotyped) was then allocated 
to the same subset to ensure prediction was across sire families resulting in a conservative estimate 
of prediction accuracy.  The division of subsets were the same for GBLUP and BLUP.  The values 
presented are the mean of five replicated cross-validations, where new random subsets were 
chosen in each replicate. 

Accuracies were calculated as the correlation of GEBV with y* for MER and BL breeds, 
where animals were assigned to breed groups according to sire breed.  The accuracy of the true 
breeding value was approximated by dividing this correlation by the mean accuracy of the EBVs 
of sires and ewes in the reference population.  The sires’ EBV accuracy was calculated using only 
their non-genotyped daughters and ewe accuracies were from the BLUP model used to calculate h2 

and calculated as ( ) 22 /1 aSE σ− , where SE2 is the standard error of prediction for the EBV.  
Potential bias of GEBV or EBV was investigated by regression of y* on GEBV or EBV.   
   
RESULTS AND DISCUSSION 

The h2 and t estimated with full BLUP model for NLW was 0.06 and 0.08, respectively.  The 
estimate for h2 was consistent and the estimate for t was slightly lower than literature estimates 
(Safari et al. 2005).  In cross validations, the accuracy of GBLUP was always higher than BLUP 
for both breeds (Table 1).  BLUP accuracy was higher when cross-validation was random, due to 
prediction within families, but deteriorated significantly when cross-validation was across sire 
families, as expected.  Adding the ram DTD into the analysis increased the accuracy in all 
scenarios showing a clear benefit of making use of all available data.  The increase in GBLUP 
accuracy of combined data was greater when cross-validation was across sire families, indicating 
that combining data had a greater effect on animals less related to the reference. The average size 
of validation sets was 278 for MER and 99 for BL.   
 
Table 1.  Accuracy and slope of regression(y*, GEBV) of BLUP and GBLUP, when using 
only trait deviations of ewes (TD) or TD plus daughter trait deviations of rams (DTD) 
 
  Accuracy Slope 
Breed Cross 

Validation 
BLUP 

TD+DTD 
GBLUP 

TD 
GBLUP 

TD+DTD 
BLUP 

TD+DTD 
GBLUP 

TD 
GBLUP 

TD+DTD 

MER Random 0.19 0.21 0.24 1.12 1.37 1.34 
Sire Fam -0.05 0.06 0.12 -1.65 1.35 1.55 

BL Random 0.15 0.19 0.22 1.10 2.47 1.61 
Sire Fam 0.10 0.20 0.27 2.23 3.88 2.83 

 
The slopes of the regression of y* on GEBV were variable.  A slope > 1 (i.e. the GEBV under-

estimated the phenotype) was observed in most analyses.  Sire family cross-validation resulted in 
more bias than random subsets.  BL slopes exhibited more upward bias than MER.  It is of note 
that the slopes in BL based on TD alone showed a stronger upward bias than the combined data.  
One reason for this could be that the genotyped research ewes were actually BL/MER crosses 
exhibiting heterosis, whereas the daughters of the industry sires are expected to be more purebred 
BL.  The bias in BL could also be due to the scaling of the multi-breed G, which can affect 
variance components.  Further work will investigate fitting heterosis and scaling G for breed 
specific inbreeding and allele frequencies (Erbe et al. 2012).  Using the current approach, the 
GEBVs would have to be blended with BLUP breeding values to be distributed to sheep breeders.  
A one-step approach (e.g. Aguilar et al. 2010) would also make use of all data and would reduce 
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issues related to blending.  However, the combination of A and G matrices also needs to account 
for the proportion of the genetic variance not captured by the markers, just like c in our approach. 

The weights on TD and DTD require an assumption on c, defined as the proportion of the 
genetic variance not captured by the markers (Garrick et al. 2009).  The true value of c depends on 
the interplay between marker density and the effective population size (Ne) of the breed.  A breed 
with a higher Ne (e.g. MER Ne 800, (Kijas et al. 2012)) would need a higher marker density than a 
breed with a lower Ne (e.g. BL Ne 150) to achieve the same c.  The range of GEBV accuracy from 
different c values was small for both MER and BL (maximum 3%).  This lack of a clear signal 
could be due to the limited size and multi-breed nature of the reference population and the low h2 
of NLW. 

The accuracies achieved using GBLUP are encouraging and more genetic gain would be 
achieved for NLW through genomic selection than BLUP.  Furthermore, making use of all data on 
both ewes and rams substantially increased the accuracy of prediction.   
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