
COMPARISONS OF IDENTICAL BY STATE AND IDENTICAL BY DESCENT 
RELATIONSHIP MATRICES DERIVED FROM SNP MARKERS IN GENOMIC 

EVALUATION 
 

S.A. Clark1,2,  B.P Kinghorn1 and J.H.J. van der Werf1,2 
 

1 University of New England, Armidale, NSW 2351 
2 CRC for Sheep Industry Innovation, University of New England, Armidale, NSW 2351 

 
SUMMARY 

In animal populations, family members inherit alleles through common ancestors and these 
shared regions are referred to as identical by descent (IBD). Furthermore, animals may also share 
alleles due to a random association with no known common inheritance pattern. This identity by 
state (IBS) also covers known relationships, such that regions that are IBD are also IBS, however 
regions that are IBS may not always be IBD. In the genetic evaluation of livestock, IBD and IBS 
information can be used to build the genomic relationship matrix (GRM) and breeding values can 
be predicted using genomic best linear unbiased prediction (gBLUP).  

This study compares a number of different methods to construct the GRM, using IBD and IBS 
information. Each method was evaluated using a reference dataset of 1781 Merino sheep and 
validated using 164 progeny tested sires that had accurate breeding values. Estimates of variance 
components were also compared. There was no significant difference between the accuracy 
achieved by the IBS and IBD methods. However the accuracy of the EBVs decreased as a greater 
restriction was applied to whether a region was IBD or not IBD. Furthermore, estimates of 
variance components were substantially different for IBD and IBS methods. 
  
INTRODUCTION 

In animal populations there is often a high resemblance between the phenotypes of family 
members due to genes inherited from common ancestors (Fisher 1918). This theory has been 
widely discussed in the field of quantitative genetics and is currently used for the prediction of 
merit in livestock and detection of disease in humans (Henderson 1975; Donnelly 1983). In 
livestock genetic evaluation, best linear unbiased prediction (BLUP) (Henderson 1975) uses this 
concept to form the co-variances among the phenotypes of known relatives through the use of a 
numerator relationship matrix (NRM). Included in this matrix are coefficients of relationships 
which are the expected proportion of alleles that individuals share in common, identical by descent 
(IBD) based on pedigree information. Theories and methods using the same principles have also 
been described for the estimation of variance components. 

Marker information has already been included in mixed model analyses (BLUP) using a 
relationship matrix derived from these markers, called the genomic relationship matrix (GRM) 
(Visscher et al. 2006; VanRaden 2008). This matrix can potentially describe the underlying 
covariance structure among individuals more fully than a matrix based on pedigree information 
alone, because the GRM uses estimates of realised relationships rather than expected relationships 
(Hayes et al. 2009). Popular methods for forming the genomic relationship matrix have been 
described by VanRaden (2008) and Yang et al. (2010). These methods use identical by state (IBS) 
information which is scaled by the allele frequencies to build the GRM, as shared rare alleles are 
more likely to be IBD than common alleles. However, these methods do not explicitly differentiate 
between IBD and IBS information. In contrast, there are very few methods that explicitly define 
IBD and often these methods only perform as well as IBS methods. However, many of these IBD 
methods have only been used in simulation and therefore constrained by the model used to 
simulate variation (Calus et al. 2008; Hickey et al. 2013). 
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In human quantitative genetics there has been a large focus placed on IBD information 
(Thompson 2008). Often, genotype probabilities that accommodate the probabilities of cross over 
events are used for determining IBD between individuals (Donnelly 1983) i.e. the more distant the 
relationship between two individuals the higher the probability that many crossovers have 
occurred. Many methods and programs have been described for the estimation of IBD and have 
been used for the detection of regions of the genome that are IBD, e.g. PLINK (Purcell et al. 2007) 
and fastIBD (Browning and Browning 2011).  

The aim of this study was to compare the use of IBD and IBS genomic relationship 
information to predict genomic breeding values using real data. The differences between each 
GRM were investigated, together with their effects on the estimation of breeding values and 
variance components, and the accuracies of resulting estimates of breeding value (EBVs). 
 
METHODS 

The data used in this study consisted of phenotypic and genotypic records from the Australian 
Sheep Cooperative Research Centre (CRC) information nucleus flock (INF). This dataset 
consisted of a reference dataset consisted of phenotypic and genotypic records from 1781 merino 
animals and a validation dataset of 164 merino sires with accurate Australian Sheep Breeding 
Values (ASBV’s). Definitions of ASBV’s can be obtained from Sheep Genetics Australia. 
Phenotypic information on the trait scanned eye muscle depth (SEMD) was analysed. To observe 
the effect of relatedness, the validation population was split into three groups based on their 
pedigree relationship to the animals in the reference dataset (Clark et al. 2012). The three groups 
consisted of; 50 closely related animals (Close), with a maximum relationship of greater than 0.25; 
the 54 distantly related animals (0.01-0.249) (Dist); and 60 unrelated animals that shared zero 
pedigree relationship.  

All animals in each dataset were genotyped using the Illumina 50K ovine SNP chip. All SNP 
in this dataset underwent a number of genotyping quality control measures (see Daetwyler et al. 
(2010)). The following fixed effects were fitted in the analysis of SEMD: Sex, birth type, rearing 
type, age of dam, contemporary group (birth year • birth month) (site • management group), age-
at-trait recording and live weight at scanning.  

As in Daetwyler et al. (2010) we assumed the gBLUP model;  
 

 

where y is a vector of phenotypes, X is a design matrix relating the fixed effects (as described 
above) to each animal, b is a vector of fixed effects, Z is a design matrix allocating records to 
breeding values, g is a vector additive genetic effects for animals in the reference dataset and the 

validation dataset and e is a vector of random normal deviates . Furthermore V(g) = G  

where G is the genomic relationship matrix, and  is the genetic variance for this model.  The 
GRM (G) was formed using two IBS methods defined by (GV) VanRaden (2008) and (GY) Yang et 
al. (2010) and five IBD methods were also evaluated. Two fastIBD matrices (Browning and 
Browning 2011) were formed. GFast(h) was based on the stringent threshold for IBD used in human 
genetics and GFast(R) used a relaxed threshold on whether a region was IBD or not. Three 
probability of IBD methods (Kinghorn 2012) were also used: GProb used an IBD probability 
estimate for each individual loci that was based on IBD information from adjacent marker 
information. This method was extended such that regions were identified as IBD if animals shared 
haplotypes of 10 (GProb10) and 50 (GProb50) markers with an IBD probability of greater than 0.98 
and if regions were shorter than the given length they were assumed to be IBS and did not 
contribute to the estimate of relationship.  
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RESULTS 
The IBS and unrestricted IBD methods (GProb and GFast(R)) were the most accurate methods to 

predict breeding value (Table 1). These results are similar to simulation studies by Hickey et al. 
(2013) and Calus et al. (2008) were there was little difference between the IBS and best IBD 
methods. However, accuracy was reduced when a restriction was placed on whether a region was 
IBD or not, by either increasing the length of the IBD segment as in GProb10 and GProb50 or by 
increasing the significance threshold as in GFast(h). The highly restricted fastIBD (GFast(h)) method 
was the least accurate method (Table 1).  
 
Table 1 The EBV accuracy (correlation between gEBV and ASBV) and regression of gEBV 
on ASBV, estimated using the alternative ways to define the genomic relationship matrix 

 IBS* IBDi 

 GV GY GProb GProb10  GProb50  GFast(R) GFast(h) 
Accuracy        
All Animals 0.456 0.451 0.453 0.413 0.340 0.465 0.239 
        
Unrelated 0.224 0.206 0.226 0.226 0.172 0.281 0.137 
Distantly related 0.450 0.499 0.478 0.394 0.334 0.434 0.216 
Closely related 0.640 0.643 0.650 0.622 0.555 0.668 0.413 
Regression        
All Animals 0.882 0.873 0.914 1.033 1.249 1.011 0.834 
* IBS methods were constructed using methods by VanRaden (GV) and Yang et. al. (GY)   
i IBD methods were constructed using: 1) IBD probabilities (GProb) with different haplotype lengths (GProb10 and GProb50) 
and 2) the FastIBD module of the Beagle software (GFast) with either a relaxed (GFast(R)) or strict (GFast(h)) constraint on 
whether a region was IBD or not. 
   

When animals were unrelated or distantly related to the reference population, accuracy was 
reduced for both IBD and IBS methods. Accuracy decreased in all cases when the IBD segment 
length increased. Furthermore, when fast IBD was highly restricted (GFast(h)), its ability to predict 
breeding value in unrelated animals was also reduced. A reduction in accuracy was observed 
because, as the restriction on whether a region was IBD or not increased, some useful information 
about rare, short haplotypes was lost. Interestingly, in unrelated animals, the GFast(R) tended to be 
the most accurate method (although not significantly better than GV, GY or GProb). 

Table 1 also shows the regression of GEBV on ASBV for each of the different GRMs. It shows 
that the IBS and GProb methods had a regression coefficient less than one, showing the GEBVs are 
over dispersed. In contrast, the GFast(R) and GProb(10) methods had a regression coefficient close to 1 
showing that both sets of EBV’s are on a similar scale to the progeny tested ASBV’s. The IBS 
methods: GV and GY are very similar and resulted in a 0.999 correlation between the breeding 
values estimated using these methods. The GFast(R) and GProb methods were only slightly different 
with a correlation between breeding values of 0.96 and 0.94 respectively with the IBS methods. 
Finally, GProb(10) used partially different information as the breeding values estimated from this 
method were only 0.88 correlated with GV. Although the methods appear to be very similar, given 
the high correlation between breeding values, the variance components (Table 2) estimated from 
each method were different. 

The GV and GY methods by VanRaden (2008) and Yang et al. (2010) resulted in similar 
variance component estimates. The ProbIBD methods (GProb and GProb10) also resulted in higher 
estimates of genetic variance. In contrast, the fastIBD method (GFast(R)) resulted in a substantially 
lower estimate of genetic variance and therefore heritability. This implicitly shows that the scale of 
the various GRM’s (which relates to the methods used to construct each GRM) can have a large 
impact on variance component estimation.  
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Table 2 Variance components estimated using various methods to define the genomic 
relationship matrix 

 Pedigree IBS IBD 
  GV GY GProb GProb10 GProb50 GFast(R) GFast(H) 

Va 1.12 1.288 1.305 1.883 1.545 1.636 0.715 0.904 
Ve 3.03 3.021 3.015 2.935 2.778 2.646 3.635 3.387 

Vtotal 4.15 4.309 4.320 4.818 4.323 4.282 4.350 4.291 
h2 0.269 0.299 0.302 0.391 0.357 0.382 0.16 0.211 

* IBS methods were constructed using methods by VanRaden (GV) and Yang et. al. (GY)   
i IBD methods were constructed using: 1) IBD probabilities (GProb) with different haplotype lengths (GProb10 
and GProb50) and 2) the FastIBD module of the Beagle software (GFast) with either a relaxed (GFast(R)) or strict 
(GFast(h)) constraint on whether a region was IBD or not. 
 
CONCLUSION 

This study shows that IBD probabilities and information from the fastIBD module of Beagle 
can be used to predict breeding value in real data. Furthermore, this study has shown that some 
IBD relationship matrices will perform as well as IBS based methods for genomic evaluation, even 
in unrelated animals. However, accuracy will reduce when breeding values are estimated using 
IBD methods that place a large restriction on whether a region is IBD or not. The variance 
components estimated from each GRM is impacted by the scale of the relationship matrix. The 
scale is impacted by the definition of the relationship information (IBD or IBS) and the allele 
frequencies that are used to scale the GRM. 
 
REFERENCES 
Browning B.L. and Browning S.R. (2011). Am. J. Hum. Genet. 88: 173. 
Calus M.P.L., Meuwissen T.H.E., de Roos A.P.W. and Veerkamp R.F. (2008) Genetics. 178:553.  
Clark S.A., Hickey J.M., Daetwyler H.D. and van der Werf J.H.J. (2012). Genet. Sel. Evol. 44: 4. 
Daetwyler H.D., Hickey J.M., Henshall J.M. and Dominik S. (2010). Anim. Prod. Sci. 50: 1004. 
Donnelly K.P. (1983). Theor. Pop. Biol.  23: 34. 
Fisher R.A. (1918). Trans. R. Soc. Edin.  52: 399.  
Hayes B.J., Visscher P.M. and Goddard M.E. (2009). Genet. Res. 91: 47. 
Henderson C.R. (1975). Biometrics 31: 423. 
Hickey J.M., Kinghorn B.P., Teir B. Clark S.A. and van der Werf J.H.J (2013) J Anim Breed 
Genet. 130: 259. 
Kinghorn B.P. (2012). Proc. Inter. Conf. Quant. Genet. 32:80. 
Purcell S., Neale B., Todd-Brown K., Thomas L. and Ferreira M.A. (2007). Am. J. Hum. Genet. 

81:559. 
Thompson E.A. (2008). Theor. Pop. Biol. 73: 369. 
VanRaden P.M. (2008). J. Dairy Sci. 91: 4414.  
Visscher P.M., Medland S.E., Ferreira M.A., Morley K.I. and Zhu, G. (2006). PLoS Genet. 2:41. 
Yang J., Benyamin B., McEvoy B.P., Gordon S.D., and Henders A.K. (2010). Nat.Genet. 42:565. 

Genomic Selection - relationships

264



 
Table 2 Variance components estimated using various methods to define the genomic 
relationship matrix 

 Pedigree IBS IBD 
  GV GY GProb GProb10 GProb50 GFast(R) GFast(H) 

Va 1.12 1.288 1.305 1.883 1.545 1.636 0.715 0.904 
Ve 3.03 3.021 3.015 2.935 2.778 2.646 3.635 3.387 

Vtotal 4.15 4.309 4.320 4.818 4.323 4.282 4.350 4.291 
h2 0.269 0.299 0.302 0.391 0.357 0.382 0.16 0.211 

* IBS methods were constructed using methods by VanRaden (GV) and Yang et. al. (GY)   
i IBD methods were constructed using: 1) IBD probabilities (GProb) with different haplotype lengths (GProb10 
and GProb50) and 2) the FastIBD module of the Beagle software (GFast) with either a relaxed (GFast(R)) or strict 
(GFast(h)) constraint on whether a region was IBD or not. 
 
CONCLUSION 

This study shows that IBD probabilities and information from the fastIBD module of Beagle 
can be used to predict breeding value in real data. Furthermore, this study has shown that some 
IBD relationship matrices will perform as well as IBS based methods for genomic evaluation, even 
in unrelated animals. However, accuracy will reduce when breeding values are estimated using 
IBD methods that place a large restriction on whether a region is IBD or not. The variance 
components estimated from each GRM is impacted by the scale of the relationship matrix. The 
scale is impacted by the definition of the relationship information (IBD or IBS) and the allele 
frequencies that are used to scale the GRM. 
 
REFERENCES 
Browning B.L. and Browning S.R. (2011). Am. J. Hum. Genet. 88: 173. 
Calus M.P.L., Meuwissen T.H.E., de Roos A.P.W. and Veerkamp R.F. (2008) Genetics. 178:553.  
Clark S.A., Hickey J.M., Daetwyler H.D. and van der Werf J.H.J. (2012). Genet. Sel. Evol. 44: 4. 
Daetwyler H.D., Hickey J.M., Henshall J.M. and Dominik S. (2010). Anim. Prod. Sci. 50: 1004. 
Donnelly K.P. (1983). Theor. Pop. Biol.  23: 34. 
Fisher R.A. (1918). Trans. R. Soc. Edin.  52: 399.  
Hayes B.J., Visscher P.M. and Goddard M.E. (2009). Genet. Res. 91: 47. 
Henderson C.R. (1975). Biometrics 31: 423. 
Hickey J.M., Kinghorn B.P., Teir B. Clark S.A. and van der Werf J.H.J (2013) J Anim Breed 
Genet. 130: 259. 
Kinghorn B.P. (2012). Proc. Inter. Conf. Quant. Genet. 32:80. 
Purcell S., Neale B., Todd-Brown K., Thomas L. and Ferreira M.A. (2007). Am. J. Hum. Genet. 

81:559. 
Thompson E.A. (2008). Theor. Pop. Biol. 73: 369. 
VanRaden P.M. (2008). J. Dairy Sci. 91: 4414.  
Visscher P.M., Medland S.E., Ferreira M.A., Morley K.I. and Zhu, G. (2006). PLoS Genet. 2:41. 
Yang J., Benyamin B., McEvoy B.P., Gordon S.D., and Henders A.K. (2010). Nat.Genet. 42:565. 

Proc. Assoc. Advmt. Anim. Breed. Genet. 20:261-265

265




