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SUMMARY 

Most genome-wide association studies (GWAS) on complex traits in livestock have focused on 
identifying single-locus effects ignoring any epistatic interaction. Here we consider analytical 
methods that explicitly look for statistical interactions between two loci. Two-stage models were 
used to ease multiple testing problems and computational demand using beef cattle data as an 
example. The results suggest that fitting epistasis models for GWAS using two-stage models is a 
useful strategy for detecting significant interactions between genetic loci and may help in 
searching for candidate genes and polymorphisms influencing phenotypic variation.  

 
INTRODUCTION 

Genome-wide association studies (GWAS) are now routinely used to identify genomic regions 
associated with traits of interest; however, this ignores an important class of genomic associations, 
that of epistatic interactions (Carlborg and Haley 2004; Hemani et al. 2013). Identifying genome-
wide interactions among SNPs (single nucleotide polymorphisms) using high-density SNP chip 
genotypes is a difficult task due to statistical complexity (e.g. multiple testing) and computational 
burden (Marchini et al. 2005; De Lobel et al. 2010). For example, consider the current Bovine 
SNP Chip which comprises of more than 50,000 SNPs, the number of SNP combinations would be 
1.25 × 109 for testing two SNPs at a time; this analysis could take several days or even weeks on a 
standard workstation. The number of possible interactions involving more than two loci will be 
exponentially higher. For these reasons, epistasis is not yet a standard tool in complex trait studies. 
Rather than testing all possible pair-wise comparisons, a more practical strategy might be to 
examine a subset of SNPs which could have influence on a trait of interest. Here we show a two-
stage approach for analysing genome-wide epistasis association (GWEA) using real ultrasound 
scan measures for carcass traits on beef cattle.   
 
MATERILS AND METHODS 

Animals and data: Animals used were part of a northern Australian breeding project of the 
Co-operative Research Centre for Beef Genetic Technologies. A total of 583 heifers of Brahman 
breed were ultrasound-scanned for eye muscle area (EMA, cm2), rump fat depth at P8 site (P8, 
mm) and rib fat depth measured the between 12th and 13th ribs (RIB, mm). The fixed 
environmental effects recorded were age (in days), month of calving, herd, and cohort 
(combination of experimental location and heifer’s year of birth). The details of the resource 
population and the data were described previously (Barwick et al. 2009; Bolormaa et al. 2011). 
Animals were genotyped using 10,000 ParaAllele/Affymetrix SNP chips (Khatkar et al. 2007). 
After quality control, 565 animals representing 51 sire families and 6,715 SNPs on bovine 
autosomal chromosomes (BTA) were analysed. The SNP positions were mapped to the genome 
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assembly UMD 3 (http://www.cbcb.umd.edu/research/bos_taurus_assembly.shtml). Missing SNP 
genotypes were imputed using Beagle (Browning and Browning 2007). Genotypes were coded as 
0 for the homozygote for allele (A), 1 for the heterozygote (AB), and 2 for the homozygote for 
allele (B).  

Additive association model: SNP effects were estimated by a single-trait-single-SNP 
association analysis. The additive effect of a SNP on each trait was estimated from its associated 
regression coefficient. The traits and SNP were fitted using the following linear mixed: 

SNPTrait fixed_effect N Animal= µ + +β + + ε    
where Trait is the phenotypic measurement for EMA, P8 or RIB trait, µ is the overall mean, 
fixed_effects were significant fixed effects specific to each trait (described in Results), NSNP is the 
number of copies of the allele (0, 1, and 2) at the SNP as a covariate, Animal is the polygenic 
effect of animals to account for the effect of relatedness, and ε is the random error. Random animal 
and residual effects were assumed to be normally distributed with zero mean, and additive genetic 
variance 2

Aσ  and residual variance 2
εσ .   

Epistasis association model: To ease computational burden, a subset of significant SNPs at a 
lenient threshold of p-value ≤ 0.01 was selected from the additive association model, At this 
threshold, 82 SNPs for EMA, 86 SNPs for P8, and 92 SNPs for RIB were available and analysed 
for two loci (e.g. SNP1 × SNP2) epistasis using the following linear mixed model:  

1 2 1 2Trait fixed_effect SNP SNP SNP SNP Animal= µ + + + + × + + ε   
where SNP1 and SNP2 are three-level factors for genotypes (e.g. AA, AB, and BB) at SNP1 and 
SNP2, where SNP1 × SNP2 in the interaction between SNP1 and SNP2 genotypes as an indicator for  
epistasis effect. Note that while the SNP effect for the additive association model was treated as a 
covariate (to maximise power of association detection), for estimating interactions it is necessary 
to treat the effects of SNPs as factors. A separate model was fitted for each pair of SNPs for all 
pair-wise combination of selected SNPs. Other terms in the model were the same as the additive 
association model. To account for multiple testing, false discovery rates was estimated for GWEA 
results using the q-value package in R 2.15 version (Storey and Tibshirani 2003). All analyses 
were performed using a REML procedure in ASReml-R package (Butler et al. 2009).  
 
RESULTS AND DISCUSSIONS 

Summary statistics and estimates of heritability for ultrasound scan measures of eye muscle 
area and fat depths traits are presented in Table 1. The effects of age, month of calving, herd and 
cohort were significantly associated with phenotypes considered. 
 
Table 1. Summary of ultrasound scan measures for eye muscle area (EMA, cm2), rump fat 
depth at P8 site (P8, mm) and fat depth between 12th and 13th ribs (RIB, mm) in Brahman 
cattle 
 
Trait No. animals Mean SD Min Max Heritability 

EMA  564 43.8 6.6 28.0 64.0 0.42 ± 0.15 

P8 565  3.7 3.7  1.0 12.0 0.48 ± 0.15 

RIB  565  1.9 1.0  1.0  6.0 0.65 ± 0.17 
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SNP association: Results of the GWAS analyses for ultrasound scan carcass related traits are 
presented in Figure 1. Using a q-value threshold of 0.05 which corresponds to p-value ≤ 1 × 10-6,  
a total of six SNPs on BTA 5 and 14 were identified as being significantly associated with the 
ultrasound scan measures of fat depths traits, most of these SNP were located on BTA 14 at 22 to 
24 Mb. The most significant SNP (p = 4.9 × 10-11; q = 3.3 × 10-7; MAF = 0.498) was rs29020688 
on BTA 14 at 24 Mb for fat depth at P8. This SNP was located in the intronic region of Bos taurus 
XK, Kell blood group complex subunit-related family, member 4 (XKR4) gene. Recently, the 
XKR4 was identified as a candidate gene affecting rump fat depth in Australian tropical cattle 
(Bolormaa et al. 2011). Other significant SNPs for fat depth traits were rs29010515, rs29010516 
on BTA 14 and rs29010471 and rs29026420 on BTA 5.  
 

 
Figure 1.  Manhattan plots of GWAS scan, a significant threshold (dashed red line) is drawn 
corresponding to an FDR of 0.05. a: rump fat depth at P8 site. Note a significant association 
on chromsome 14. b: rib fat depth. Note the significant associations on chromosome 5 and 
14. 

Epistasis association: Image plots in Figure 2 depict graphical representation of GWEA 
results for ultrasound scanned fat depths at P8 site and RIB traits. These heat maps show epistatic 
signals or so called ‘hot spot’ (red colour spots) where significant epistatic association were 
detected at genome-wide level. The colour gradient in the panel on the right side of the plot 
represents –log10 (p-values). Evidence of epistatic association was detected on several 
chromosomes; however, the strongest epistatic signals were for pairs of SNPs on BTA 8 and 12, 
BTA 8 and 14, and BTA 8 and 15 for fat depth at P8 site trait. Using a q-value of 0.10 which 
corresponds to a p-value of 10-4, significant epistatic interactions between SNPs in DDX56 (BTA 
4) and EFHD2 (BTA 16), MAP3K5 (BTA 9) and TMEM132D (BTA 12) genes were detected to 
be associated with scanned RIB fat depth, whereas an interaction between SNPs in ROBO2 (BTA 
1) and DZANK1 (BTA 13) genes was associated with P8 site fat depth. These epistatic genes 
could be detected only after fitting epistasis models. Once significant gene-gene epistatic 
interactions are identified, this will facilitate to define networks of interacting genes that can be 
incorporated into existing functional annotation and molecular pathways, and hence provide the 
genomic basis of improving carcass traits efficiently in beef cattle. 
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CONCLUSIONS 
This study demonstrated the usefulness of modelling epistasis in the analysis of complex traits, 

and identified potential candidate genes affecting carcass traits using field data from an Australian 
Brahman cattle population. Information about epistasis can add to our understanding of the 
complex genomic networks that form the fundamental basis of biological systems.  
 

 
Figure 2. Heatmap image of genome-wide epistasis association. The heatmap legend scale 
(right side) is on –log10(p-value) scale. a: fat depth at P8 site. b: fat depth at RIB. Note red 
spots indicate epistatic signals. 
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