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SUMMARY  

We discuss genomic selection as a way to provide information on breeding values for traits that 
are difficult to select for. A brief review of genomic prediction methods shows that currently in 
sheep, genomic prediction requires selection candidates to be genetically related to a reference 
population although it allows information of more distantly related individuals to contribute to 
selection accuracy. Subsequently we discuss genomic selection in a sheep breeding program 
context and discuss possible ways to optimize genotyping strategies in a breeding nucleus. 
Genotyping a proportion of pre-selected young males saves costs without compromising genetic 
gain, making genotyping cost effective even at a high testing cost. When only counting 
expressions of genetic gain in two tiers, the optimal proportion of males genotyped becomes lower 
and genotyping becomes prohibitive if testing costs are above $100 per head, unless breeding 
males can be used in the first year.  
 
INTRODUCTION 

Breeding programs are mainly driven by the choice of traits in the breeding objective, and their 
relative importance, the investment in trait measurement, and decisions about selection and mating 
based on estimated breeding value. Currently, the main tools available to breeders are estimated 
breeding values (EBVs) and indices. EBVs are best predictions of an animal’s breeding value 
given all data available on phenotypic measurement and pedigree, and this can be enhanced by 
genomic information. This is particularly useful for traits that have a low EBV accuracy at the 
time of selection. One of the key questions for individual breeders is what information should be 
collected to drive breeding programs. With the advent of genomic selection, a typical question that 
arises is ‘should I DNA test and if so, which animals should I genotype’? 

To predict breeding value based on genomic information requires a reference population that 
needs to be large (thousands of animals measured) and to some extent represents the lineages and 
breeds found in the commercial breeding population. The question about the genetic constitution 
of a reference population for genomic selection is challenging for sheep breeding in Australia 
where the population consists of a diversity of breeds and lines within breeds. It is relevant to 
know whether breeding animals can be predicted based on a DNA test if they have no strong 
genetic relationship to the reference population.  
 The aim of this paper is to discuss breeding program options for sheep that allow for genomic 
selection and for selection on traits not normally measured by stud breeders. We first discuss 
genomic selection with specific emphasis on the value of genomic information to selection 
accuracy, and the accuracy of genomic prediction depending on an individual’s relationship to a 
reference population. Subsequently we look at the breeding program context and optimize the 
proportion of rams to be genotyped in a breeding nucleus.  
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GENOMIC PREDICTION 
 
Principle and Methods. Genomic selection involves collection of DNA samples on young 
breeding animals. These samples are sent for genotyping and based on information from thousands 
of DNA markers (single nucleotide polymorphisms - SNPs) an estimate can be made of breeding 
value by comparing the DNA information on the breeding animal with that of a reference 
population of animals that have information on DNA as well as phenotypes. Genomic selection 
was first proposed by Meuwissen et al. (2001) and is based on the proposition that if the marker 
density is high enough, each quantitative trait locus (QTL) is bound to be in linkage disequilibrium 
with a marker. This allows estimation of SNP effects across the whole genome in a set of animals 
with phenotypes and genotypes measured, then based on such estimates the breeding value of 
animals that have no phenotypes can be predicted. The term ‘prediction equation’ is often used, 
indicating that the genomic breeding value is calculated from a multiple regression equation of 

SNP genotype: GBV =  where bi is the effect of SNP genotype xi. Various statistical 
methods have been proposed to estimate b. With tens of thousands of markers, it is not possible to 
estimate a regression effect for each marker as the number of data points is generally much 
smaller. Therefore, markers are usually treated as random effects. Depending on the prior 
assumption of SNP effects, such models can assume equal variance at each locus, a different 
variance at each locus, or a different variance at a small subset of loci with the remaining loci 
assumed to have no effect. In the original paper of Meuwissen et al. (2001) these methods were 
termed “BLUP”, “BayesA” and “BayesB”, respectively. These and slight variations of the 
methods have been used ever since data on SNP chips has become available, and in most cases, 
there appears to be little difference in the predictive ability of SNP effects that were obtained with 
any of these methods. This is an indication that the model underlying genetic variation is probably 
based on many small effects at many different loci, also known as the infinitesimal model. Clark et 
al. (2010) found through simulation that the BayesB method should be superior if much of the 
genetic variation of a trait is affected by few loci with large effects, but methods converge to a 
similar prediction accuracy under the infinitesimal model. 
 
GBLUP. An interesting analogy was reported by Habier et al. (2007) who showed that the BLUP 
method for genomic selection is equivalent to the usual animal model where the numerator 
relationship matrix that is based on pedigree (the A-matrix) is replaced by a genomic relationship 
based on similarity of genotypes across the genome (G-matrix). This is because in a BLUP model 
for genomic selection the variance of the observations can be written as XX’ + λI, where X links 
animal phenotypes to all marker effects, i.e. it contains the animals’ genotypes. XX’ gives the 
cross-products of animals’ genotypes, or ‘correlations between genomes’ and these elements have 
the same expectation as additive genetic relationships in the A-matrix.  This has led to an 
interesting discussion regarding the information actually used in predicting genomic breeding 
values. Habier et al. (2007) argued that even if linkage disequilibrium (LD) did not exist, genomic 
prediction would still have a non-zero accuracy as genomic prediction could simply be based on 
relationships. However, simulation results showed that predictions based on relationships wear out 
quickly across generations whereas prediction based on LD persist for longer. A BayesB method 
would be more based on LD-type predictions and was therefore proposed as the preferred method. 
This was also concluded by Clark et al. (2010) who showed that that the BayesB method is 
generally more robust as it also captures relationships. 

Another consequence of Habier’s result is that both conceptually and computationally the 
genomic prediction is now simplified. One can easily predict genomic breeding values using 
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software such as ASReml (Gilmour et al., 2009), where data on ‘n’ animals is combined with a 
genomic relationship matrix of ‘n + q’ animals, with n being the number of animals in the 
reference population with both phenotypes and genotypes, and q the number of animals without 
phenotypes but with genotypic data such that their breeding value can be predicted from genomic 
information. ASReml allows fitting an animal model where the inverse of the G-matrix that is 
computed from the genotypic data can be used to fit the covariance structure among the animal 
effects. The mixed model equations look like 
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where G11 pertains to the inverse of the genomic relationship among the animals in the reference 
set and G22  pertains to the set of animals to be predicted,  and  G12 pertain to genomic 
relationships between these two sets. Hence, the genomic breeding values of the animals without 
phenotypes is estimated as  

ĝ2 = -(G22)-1G21 ĝ1                [1] 
 

which can be interpreted as a genomic regression of breeding values of animals without data on 
breeding values of animals with data. This approach is usually referred to as the GBLUP method. 
However, note that the genomic relationship matrix (G) can be constructed in many ways, 
differing in how they weight similarity at each locus. When all loci are weighted equally, the 
method is equivalent to Meuwissen et al. (2001) BLUP approach for genomic selection.  When 
loci are weighted according to the mount of variation explained by it, these mixed model equations 
can give the same solutions as BayesA or BayesB approach, depending on how their variances 
were estimated, which depends on the prior distribution assumed for QTL effects. 

A simple example can illustrate the GBLUP method. Let animals 1-4 have a phenotype and 
animal 1 is a parent of 2 and 3. Animal 5 is a third offspring of animal 1 but has no record. We 
ignore fixed effects and assume them known, and the observations y are deviations from their 
expectations (e.g. contemporary mean). If we use a pedigree based BLUP method, we can get 
estimates of the breeding values of those 5 animals as ! = (Z’Z+λ!!!)-1Z’y and when using a 
GBLUP method the prediction is ! = (Z’Z+λ!!!)-1Z’y with A and G being 

 
A=               G= 

1	   0.5	   0.5	   0	   0.5	   	   1	   0.5	   0.5	   0.02	   0.5	  
0.5	   1	   0.25	   0	   0.25	   	   0.5	   1	   0.20	   0.015	   0.20	  
0.5	   0.25	   1	   0	   0.25	   	   0.5	   0.20	   1	   0.025	   0.30	  
0	   0	   0	   1	   0	   	   0.02	   0.015	   0.025	   1	   0.025	  
0.5	   0.25	   0.25	   0	   1	   	   0.5	   0.20	   0.30	   0.025	   1	  

 
The A-matrix is based on the path coefficients derived from the pedigree, whereas the G-matrix is 
an arbitrary example in which based on the genomic data, animals 3 and 5 are genomically more 
similar to each other and more distinct from animal 2 than based on expected degrees of 
relationship for half sibs. Also, animal 4 is now genomically somewhat related to the others, 
although not a direct relative and animal 4 shares more genomic information with animals 3 and 5 
than with animal 2.  When assuming a heritability of 0.25, the breeding value for the animal 
without phenotype (animal 5) would be estimated under regular BLUP similar to [1]  as !!= 0.5!! 
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(note that !! contains also phenotypic information about animals 2 and 3) whereas under GBLUP 
this prediction according to [1] would be  !!= 0.4999!! -0.026!! + 0.0622!!+0.0144!!.  

The genomic regression coefficients themselves are not always insightful due to them being 
partial regression coefficients. For example, it may seem odd that to predict animal 5, the breeding 
value from animal 2 has a negative weight, whereas that of animal 4, which is much less related to 
animal 5, is positive. The reason is that information from animal 2 is also used to predict !!. 
Regression of genomic breeding value on phenotypes would avoid this confusion. These can be 
calculated as  ! = GZ’V-1y and for animal 5 this gives  
 
under regular  BLUP    !!= 0.1136.y1  - 0.0455.y2 + 0.0455.y3      
whereas under GBLUP       !!= 0.1135.y1 + 0.0328.y2 + 0.0591.y3 + 0.0519.y4.  
 

The accuracy would be computed from the diagonal of the inverse of the coefficient matrix 
(Cii) for animal 5 as r = √(1-λC55) = 0.282 under BLUP and 0.285 under GBLUP.  

This example illustrates a number of points when using GBLUP; 1). There is a large degree of 
similarity between pedigree-based BLUP and genomically-based GBLUP predictions. A GBLUP 
prediction uses a more accurate covariance structure among relatives and therefore gives a more 
appropriate weighting to the information of relatives. For example, some sibs have genomically 
more in common than others, even though based on pedigree they may have the same expected 
numerator relationship. Visscher (2008) presented expected values for mean and variance of the 
proportion of the genome that individuals share identical by descent. For the human genome they 
found the standard deviation of relationship to be 0.039 for full sibs and 0.027 for half sibs, i.e. 
half sibs have a mean relationship of 0.25 but can vary between 0.20 and 0.30. Note that this 
variation in relationships is larger when fewer genes are involved, e.g. in the extreme case of 
single locus traits the relationship could be either 0 or 1, making the difference between BLUP and 
GBLUP larger. 2) Under both BLUP and GBLUP, most of the information to predict an animal’s 
breeding values comes from relatives. 3) Information from distant relatives is often ignored in 
BLUP as it falls outside the known pedigree whereas in GBLUP such relationships may be 
detected and the information on distant relatives can be used. 

 
Remaining Questions. The example above showed that to predict genomic breeding values, it is 
very useful to have relatives in a reference population. Information from distant ‘relatives’ could 
also contribute, but many more records on such distant relatives are usually needed to achieve a 
similar accuracy. Using simulation, Clark et al. (2011) found that GBLUP can give considerably 
higher accuracy of breeding value prediction than the pedigree-based BLUP method for animals 
that have no direct relatives in a reference population. This gives some confidence for the 
feasibility and utility of reference populations for genomic selection as selection candidates may 
not all need to have direct relatives in this resource.   

Daetwyler et al. (2011) investigated the accuracy of predictions across breed and found these 
to be low when sheep breeds are distant. Sheep breeding programs have a multiplicity of different 
breeds, which makes it difficult to set up reference populations if a large number of animals from 
each breed needs to be represented. A solution might be to use denser markers (Goddard et al., 
2006) as with shorter distances between marker and QTL it is more likely that there is LD across 
populations such that the marker becomes predictive across populations. Prediction across breeds 
would also require locus effects to be at least similar across breeds. Such a hypothesis has not been 
widely tested in whole genome prediction. The LD paradigm that underlies the original 
Meuwissen et al. (2001) paper would require dense markers for accurate genomic predictions, and 
denser markers are needed to predict more distantly related animals. The genomic relationship 
approach may suggest that much sparser markers are sufficient to predict genomic relationships. 
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Whether denser markers would allow prediction of more distantly related individuals more 
accurately needs to be investigated. 

 
GENOMIC SELECTION 
 
Prediction accuracy. Genomic information can increase the accuracy of EBVs in young breeding 
animals, particularly for traits that are difficult to measure on-farm and early in life. Modeling of 
sheep breeding programs has shown that the predicted additional rates of genetic gain could be 
30% for wool sheep and 20% for meat sheep (van der Werf, 2009). The advantage in wool sheep 
is mainly an increased accuracy of predicting merit for life time production (wool and lambs) 
when selecting at an early stage. The advantage in meat sheep is mainly the prediction of carcass 
and meat quality traits that cannot be measured on breeding animals. The CRC for sheep industry 
innovation in Australia has used more than 7000 records from the Information Nucleus Flock as 
well as from the Sheep Genomics Project to predict genomic breeding values which were 
compared with Australian sheep breeding values (ASBVs) from progeny tested industry rams. The 
prediction accuracy was based on a 50k SNP chip and was shown to be highest for merino sires, 
with accuracies of ~0.6 for wool and ~0.5 for meat traits, because the reference population was 
mainly based on a merino genetic background (Daetwyler et al, 2010). Prediction accuracies were 
between 0.2 and 0.5 in maternal and terminal sire breeds. Further work is being undertaken to add 
additional data about phenotypes and genotypes.  
 
Commercialization. The commercial delivery of genomic information to breeders in Australia 
can be via the existing genetic evaluation system (OVIS) where various methods have been 
explored to combine genomic and phenotypic information into predicted breeding values. This has 
recently been tested in a pilot project and breeders have received estimated breeding values for 
young rams for existing traits but with improved accuracy, as well as for new traits that are not 
routinely measured. To the breeder, genotype information will appear as improved accuracies of 
EBVs for existing traits or EBVs for traits that were not measured on-farm before, e.g. meat 
quality. This seems an easy model for introducing genomic selection into the industry. However, 
there are two important hurdles that need to be taken. First, investing in genotyping needs to be 
cost effective for a breeder; hence the cost of genotyping should not exceed the returns from 
improved accuracy of breeding values. These returns may be hard to capture, especially when 
achieved in traits that are valued further down the supply chain. Sheep production systems are 
predominantly pastoral based and extensive in nature and the number of commercial expressions 
resulting from most stud rams is low. This makes it difficult for individual breeders to invest much 
in trait recording or DNA testing even though the cost-benefit of investments in breeding from a 
national perspective is usually favourable due to the multiplication of benefit across multiple tiers. 
Cost-benefit from the individual breeder’s perspective could be evaluated by only counting 
cumulative benefits of selection superiority as expressed in direct offspring of sires (rams) sold, 
e.g. see Dominik et al., (2011).  
  A second hurdle is that to predict breeding value based on a DNA test, a large reference 
population needs to exist and to some extent represent all lineages and breeds found in the 
commercial breeding population.  For traits that cannot be measured on-farm, such as carcass and 
meat quality traits, this requires investment in phenotypic measurement such as is currently 
achieved in the information nucleus model. As not all industry benefits of genetic improvement 
flow back to breeders, this investment is unlikely to come solely from breeders. Other traits such 
as adult wool measures, adult weight and reproduction could be measured on farm. Without 
genomic selection this information is hard to utilise in selection decisions as it becomes available 
after animals are selected for the stud breeding program. Genomic selection could use information 
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on previous generations efficiently and for such traits the reference populations might well consist 
of the ancestors of the current selection candidates across all trait recording flocks. 

 
Genotyping Strategies. We used the sheep breeding model previously developed by Horton 
(1996) to examine the optimal proportion of males genotyped in a breeding nucleus. The model 
was adapted to consider the increase in information available for older breeding animals, both due 
to extra measurements and progeny information, and rams were selected optimally across age 
class. The model allows for the use of genomic information to improve selection accuracy. Since 
this requires expensive tests the model uses two stage selection of the nucleus rams. The young 
rams are tested using measured values (including information from relatives where available) at 
the age they could enter the breeding flock. Then a proportion of the best rams available are 
selected for genomic testing. The rams actually used in the nucleus are chosen using all the 
information available, including the genomic results. Rams not used in the nucleus are used in the 
multiplier or commercial levels as usual. After taking into account cost of measurement of 
phenotype and genotype, the breeding model was optimised using a differential evolution 
algorithm for a single objective or a multiple objective genetic algorithm, using the objectives $ 
value per ewe and efficiency ($ gain as % of $ invested) as the criteria of optimization. The 
proportion of the nucleus ram drop chosen for genomic testing is optimised by the genetic 
algorithm. 

We initially considered a model for a three-tiered breeding system, with a nucleus, multiplier 
flocks and commercial flocks. The model was then modified to also be able to represent a two-
tiered system, where the nucleus flock (possibly using genomic information) sold rams directly to 
commercial flocks rather than through multiplier flocks. With only two-tiers the nucleus must be 
able to provide returns from the selection methods by direct gains in the commercial flocks, rather 
than multiplying the genetic benefits through the multiplier tier. The two-tiered system was 
simulated by ensuring that the nucleus was large enough to produce sufficient rams for all the 
commercial flock and the ‘multiplier flocks’ did not use any selection for their rams. The value of 
the ‘multiplier flock’ cull rams was set to be the same as the value of wethers produced in the 
commercial flock, so these groups became equivalent for production purposes. The nucleus 
produced 10,000 lambs under the two tier system and it was 2,000 for the three tier system. The 
total number of ewes was 150,000 and 1 million, respectively. The model was used to test the 
potential value of genomics at a range of different costs, by determining the optimum proportion 
of nucleus rams to be tested at a given cost per test. The results of five runs of the model at each 
test cost are shown in Figure 1. Models were tested with rams first used at 19 months (i.e. lambs 
born when rams were 2 yo) and for rams used for mating at 7 months of age (lambs born when 
rams were 1 yo). Without genomic information, selection accuracies at 7 mo and 19 mo were 0.48 
and 0.62 while with genomic selection these were 0.62 and 0.75, respectively. The coefficient of 
variation of the breeding objective was 10%. 

For a three-tiered structure, if the cost of genomic testing was less than $500 per animal 
genotyped, the optimum strategy required the genotyping of about 75-80% of the ram drop. The 
initial selection was based on measured information including measurements on relatives, then 
using genomic tests to select the rams required in the nucleus. For the 2 yo ram system, at test 
costs below $100 the optimum proportion tested was unstable, either close to 80% or at 100% for 
different runs of the model. For a two-tiered structure, when rams were first used for mating at 19 
months there was sufficient information to make the selection with reasonable accuracy based on 
data available at that age and with test costs greater than $110 the model did not use genomic 
selection. At $110 per test the solutions with the use of genomics were equal to those without 
genomics in terms of $gain per ewe in the system, while below $110 per test the use of genomic 
information improved the value of the breeding system. When rams were used for breeding at a 
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younger age there was less measured information available so the accuracy was much lower, 
unless genomic data was also used for selection. In this case the increase in accuracy was critical 
and with test costs of $300/animal about 43% of the rams were selected for genomic testing before 
use as breeders in the nucleus. Even with test costs at $500 per animal tested the optimal breeding 
system required the use of genomics when rams were used for breeding at 7 months. 
 

 
 Figure 1. Cost of genomic tests and % of rams tested in the optimum model structure. 
 

According to our modeling it is cost effective to genotype a substantial proportion of the 
breeding nucleus, even if genotyping costs are fairly high. This is because much of the genetic 
progress achieved is multiplied over many animals. For example in the three-tier system genetic 
improvement is expressed in 1 million commercial animals. In the two-tier model, the 
multiplication factor is lower and therefore the benefits per DNA tests are much lower and with 
genotyping costs above $100 it becomes uneconomical to genotype unless rams are used for 
breeding when little or no phenotypic information is available.  

It is important the emphasize here that we did not simulate a specific breeding objective as 
used in the industry, but rather aimed at showing the principles by using a generic ‘overall merit’ 
objective with a genetic standard deviation of around $9. This is at the high end of the breeding 
objectives that underpin the indexes used by Sheep Genetics. Different objectives will have 
different benefit from genomic selection. The shape of the graphs displayed in Figure 1 will be 
largely unaffected by the particular breeding objective but the scale along the X-axis could vary.  

The current model is a first attempt to optimize investment in genotyping and as such could be 
used for a broader scope of problems related to investment in information. For example, it can be 
extended to include measurement of individual traits and this could be achieved via multiple stage 
selection steps. The model would need to include multiple traits to reflect not only increased 
response for overall merit, but also a shift of response to traits for which more information is 
collected. Also the option of using reproductive technology would need to be considered as 
genomic selection would lead to increased benefits from such technologies. We have ignored the 
cost of the reference population when assessing genotyping strategies for individual breeders. Size, 
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genetic composition and measurement strategy of such a reference population could be determined 
with regard to the size and composition of the commercial breeding population that would benefit 
from it.  
CONCLUSIONS 

Genomic selection has potential in sheep breeding as accuracies have been reported that are of 
sufficient magnitude to cause a substantial improvement of selection response (e.g. see Daetwyler 
et al, 2010). Ongoing genomic selection requires a reference population with genotypes and 
phenotypic measurements on traits that cannot be easily selected for on-farm. The required size, as 
well as the genetic constitution of the reference population needs to be determined, and is 
dependent on the contribution from more distantly related individuals to a genomic prediction. 
Prediction accuracy is expected to improve with an increase in size of the reference population, 
and prediction across breeds may or may not improve with denser SNP panels, the latter depends 
on the assumption that consistent effects of loci or small regions on the genome can be estimated 
with sufficient accuracy across a wider range of genetic backgrounds. There is currently already a 
wealth of genotypic and phenotypic data in the sheep CRC and elsewhere that can contribute to 
resolving many of these questions. Experiences from cattle research can provide information about 
the added value of high density chips. Such information could be used to model expected 
outcomes from selection strategies and to optimize investment in trait measurement and 
genotyping. Business models have to be developed such that investment in breeding programs can 
be shared among those that benefit from genetic improvement. These are not only breeders, but 
also commercial producers, processors and ultimately consumers. 
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