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SUMMARY 

Breeding values for carcass traits were estimated in a multi-breed sheep population using 
phenotypic, pedigree, and genomic information. This was achieved by incorporating a genomic 
relationship matrix into the standard pedigree based relationship matrix used in an animal model 
genetic evaluation. Heritability estimates were generally very close to estimates from a model 
using pedigree information only. A group of young rams genotyped but not measured for the traits 
in question were included in the analysis, and the accuracy of their estimated breeding values 
estimated using the prediction error variances of the fitted model increased by between 14 and 24 
percentage points when genomic information was used.  However, these accuracies were between 
12 and 24 percentage points higher than observed accuracies, indicating that the scaling of the 
genomic relationship matrix was incorrect. Further research is required on the implementation of 
the method in multi-breed data. 
 
INTRODUCTION 

Genomic selection using information from high density SNP marker panels can improve the 
accuracy of selection considerably, depending on the context. Van der Werf (2009) showed that 
genomic selection in sheep could increase selection response in overall merit by 30 to 40%, with 
the impact being greatest for traits which are not routinely measured on young breeding animals 
such as carcass, adult wool traits, female fertility, and disease traits. 

When commercially relevant animals are genotyped, the benefits for breeding programs will be 
best captured by incorporating this genomic information into estimated breeding values (EBVs). 
The challenge for implementation is how to deal with a mixture of animals with records on 
important traits that may or may not have been genotyped. Two approaches are possible, with the 
first being a multi-step process where an association analysis is performed to estimate genomic 
breeding values (GBVs) for animals with genotypes, with these GBVs then either included in a 
genetic evaluation model as additional traits (Johnston et al 2009) or blended with EBVs from an 
existing genetic evaluation using selection index theory (e.g. Harris and Johnson 2010). The 
second and preferred approach is to simultaneously include all genomic, phenotypic, and pedigree 
information in a single analysis. Such an approach has been developed by Aguilar et al. (2009), 
and in this paper we implement this method to estimate breeding values enhanced by genomic 
information for carcass traits in sheep. 
 
MATERIALS AND METHODS 

Data used were obtained from the Sheep CRC’s Information Nucleus Flock (INF) (Fogarty et 
al. 2007). This is a multi-breed population, with approximately 100 industry sires from terminal, 
maternal and Merino sires mated annually to Merino and crossbred dams at eight sites across 
Australia. The progeny are measured for a wide range of traits, including the carcass and meat 
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quality traits used in this study and a proportion are genotyped using a high density 50K SNP 
marker panel. 

The traits considered in this study were hot carcass weight (hcwt, kg), carcass eye muscle 
depth (cemd, mm), carcass fat depth at the C site (ccfat, mm), lean meat yield (lmy, %), shear 
force at day 5 post slaughter (shf5, Newtons), and carcass intramuscular fat (cimf, %). A summary 
of the data is shown in Table 1. Animals were measured in 2008, 2009 and 2010 for some traits, 
with the number of animals with records ranging from 3554 to 6710, and between 2711 and 3668 
genotyped. Mean age at slaughter was 262 days. There were between 179 and 313 sires, and 155 
to 209 of these also had genotypes. In addition, 249 young industry rams with genotypes only were 
included in the analysis. These young rams were distributed across the main breeds in the data. 

 
Table 1. Data summary for carcass traits analysed (see text for trait definitions) 
 

  hcwt cemd ccfat lmy shf5 cimf 

Records 6710 5760 5611 4789 3554 3762 

Records genotyped 3668 3590 3478 2121 2711 2860 

Mean 22.9 30.1 4.1 58.0 26.5 4.4 

Sires 313 312 311 312 179 184 

Sires genotyped 209 208 208 208 155 160 
 
Single trait models were used as follows: 
 

! = !" + !"# + !" + ! 
 
Where ! is the vector of records, !" represents fixed effects, !"# represents breed effects, !" 

breeding values, and !  random residual effects. The fixed effect common to all traits was 
contemporary group defined in sub-classes of year of birth, site, management group, kill date. For 
shear force, an additional sub-class for test laboratory was also included. Other effects included 
age of dam (hcwt), age of measurement (hcwt, lmy), birth type (hcwt), rearing type (hcwt), and 
hcwt (cemd, ccfat, shf5, and cimf). 

Breed effects were fitted as partial regressions of performance on the proportion of genes from 
each breed, with the matrix ! containing breed proportion coefficients for each animal in the 
pedigree for analysis animals. These were derived from a pedigree merged across all of the 
separate genetic evaluation analyses performed in Australia, and in theory giving the best available 
information on breed composition. There were 29 breeds represented in the data, with Merinos 
sub-divided into ultrafine, fine-medium, and strong wool strains. Several breeds were not well 
represented, and to reduce problems with estimability breeds were fitted as random effects. 

Breeding values were estimated using two methods. In the first (AEBV), a standard animal 
model was fitted using the numerator relationship matrix (!) for all animals in the pedigree. This 
pedigree was constructed to include two generations of ancestral pedigree for the animals with 
records and the young industry rams with genotypes, and included 17,195 animals in total. Hence, 
for this model !"# ! = !.!!! where !!! is the additive genetic variance.  

In the second method (HEBV), the inverse of the numerator relationship matrix ! was replaced 
by the following matrix as derived by Aguilar et al. (2009): 

 

!!! = !!! + 0 0
0 !!! − !!!!!
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Where ! is the numerator relationship matrix for the entire pedigree as before, ! is a genomic 
relationship matrix for the subset of genotyped animals, and !!!  is the sub-partition of the 
numerator relationship matrix for those animals. Firstly, a raw genomic relationship matrix (!!) 
was calculated from the 50K SNP genotypes following VanRaden (2008), scaled so that the 
average diagonal element was 1. Then ! was calculated as !!! + 1 − ! !!!using ! = 0.95 as 
the weighting factor as proposed by Aguilar et al. (2009) and Forni et al. (2011) to alleviate 
problems with singularities in the genomic relationship matrix. 

The models were run in ASReml (Gilmour et al. 2009), with !!! included as a user specified 
matrix, and were allowed to converge to REML estimates of the variance components. Estimated 
breeding values and accuracies from the two methods were then compared within genotyped and 
un-genotyped progeny and sires, and for the young industry rams with genotypes. While breeding 
values for total genetic merit would normally be estimated as !! + ! where ! and ! are the 
estimates of breed effects and breeding values, comparisons were based only on !, as it was the 
component directly affected by genomic information. Accuracies were calculated as 
1 − !"#! !!!×!!! % where !"#! is the prediction error variance for the ith animal obtained 

from ASReml output, !!! is the diagonal element of either ! or ! for the ith animal, and !!! is the 
estimated genetic variance. They were compared with observed accuracies calculated 
independently of this study by splitting the data for progeny with genotypes into training and 
validation sets, calculating a genomic prediction equation in the training set, and then evaluating 
its accuracy in the validation set (H.D. Daetwyler, pers. comm.). 

 
RESULTS 

Single trait estimates of parameters for the AEBV and HEBV models are shown in Table 2. 
Heritability estimates for the two methods were similar for cemd, ccfat, lmy and shf5. For hcwt 
heritability was 0.13 lower for HEBV, while for cimf it was 0.05 higher. 

 
Table 2. Parameter estimates for heritability (h2), additive genetic variance (!!!), phenotypic 
variance (!!!) and between breed variance (!!!! ) for the AEBV and HEBV methods 

 
Param. Method hcwt cemd ccfat lmy shearf5 cimf 

h2 AEBV 0.55 ± 0.04 0.31 ± 0.04 0.28 ± 0.04 0.35 ± 0.04 0.30 ± 0.05 0.43 ± 0.06 

 HEBV 0.42 ± 0.03 0.30 ± 0.03 0.27 ± 0.03 0.36 ± 0.04 0.31 ± 0.04 0.48 ± 0.04 

!!! AEBV 3.22 ± 0.30 2.34 ± 0.33 0.84 ± 0.12 2.13 ± 0.29 14.03 ± 2.52 0.28 ± 0.04 

 HEBV 2.41 ± 0.22 2.30 ± 0.28 0.82 ± 0.10 2.21 ± 0.26 14.71 ± 2.25 0.32 ± 0.04 

!!! AEBV 5.83 ± 0.13 7.51 ± 0.16 3.00 ± 0.06 6.11 ± 0.14 46.88 ± 1.24 0.66 ± 0.02 

 HEBV 5.74 ± 0.12 7.59 ± 0.16 3.02 ± 0.06 6.21 ± 0.14 47.50 ± 1.28 0.68 ± 0.02 

!!!!  AEBV 14.13 ± 4.87 3.18 ± 1.39 1.06 ± 0.48 3.38 ± 1.38 5.54 ± 3.35 0.20 ± 0.11 

 HEBV 13.06 ± 4.49 2.75 ± 1.29 0.91 ± 0.45 2.61 ± 1.19 6.04 ± 4.19 0.15 ± 0.10 
 
Including genomic information had a small impact on breeding values of measured progeny 

and their sires. Correlations between AEBV and HEBV estimated breeding values averaged 0.98 
and 0.94 for un-genotyped progeny and sires respectively, 0.94 and 0.89 for genotyped progeny 
and sires, and 0.48 for young rams. For traits where heritability showed little change between 
methods, accuracies for progeny and sires were similar, while for hcwt the lower heritability led to 
a reduction in accuracy, and for cimf the higher heritability lead to an increase in accuracy. 
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Results for young rams that were genotyped but not measured are shown in Table 3. Mean 
accuracies for HEBV ranged from 32 to 40%. These means represented a mean improvement of 
between 14 and 24 percentage points over AEBV accuracies for these animals. However, HEBV 
accuracies were ranged from 12 to 24 percentage points higher than observed accuracies. 

 
Table 3. mean accuracy (%) of HEBV for young rams, increase in accuracy (∆ = HEBV – 
AEBV) for young rams, and observed accuracy (H.D. Daetwyler, pers. comm.) 

 

 hcwt cemd ccfat lmy shf5 cimf 

Accuracy 40 37 36 37 32 37 

Accuracy ∆ 23 14 14 16 20 24 

Observed accuracy 27 25 12 21 8 19 
 

DISCUSSION 
One of the challenges with the HEBV method is to ensure that the genomic relationship matrix 

is scaled appropriately so that it is compatible with the pedigree based relationship matrix in  !. 
Incorrect scaling can lead to inflated estimates of genetic variance and accuracies of breeding 
values (Forni et al. 2011). Use of a normalised !  in this study as proposed by Forni et al. should 
lead to similar estimates of genetic variance for both methods but with lower standard errors for 
HEBV. The results presented in Table 2 were generally consistent with this expectation. However, 
the disparity between accuracies calculated from the HEBV method and observed accuracies in 
Table 3 indicates that there was a problem with the scaling of !. In a subsequent analysis using 
data only from Merinos HEBV accuracies were not inflated relative to the observed accuracies. 
This suggests that the problem is due to the multi-breed nature of the data.  

While the ability of the HEBV method to simultaneously use all records together with pedigree 
and genomic information has obvious advantages, further research is needed on its application in 
multi-breed data. 
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