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SUMMARY 
With the overarching aim of better managing genetic progress at an industry level, this study 

explored whether coupling the power of agent-based models with the elegance of network 
interaction topology can assist with the two-fold aims of: (1) characterising the relationships 
existing in the Australian sheep breeding industries; and (2) improving the development and 
delivery of decision aids and tools for sheep breeders. Data from the August 2010 LAMPLAN 
evaluation was interrogated. Input and output files from the genetic evaluation of Poll Dorset and 
White Suffolk were processed to generate a network where nodes were flocks and edges 
connecting nodes represented the sharing of genetic material via common sires. As a result, we 
report on the interplay between a series of flock attributes including size, sex mating ratio and 
network connectivity structure with CarcasePlus Index value. 

   
INTRODUCTION 

Agent-based modelling aims at using decision-making rules to model the actions and 
interactions of autonomous agents, both individual (eg. at the flock level in our context) or 
collective (eg. at the breed level), with a view to re-create and predict the appearance of complex 
phenomena. It combines elements of game theory, complex systems, computational biology, and 
evolutionary programming. Bonabeau (2002) provides an introduction of the basic principles of 
agent-based models and argues that its real-work application can be encapsulated in four main 
areas: flow simulation, organisational simulation, market simulation and diffusion simulation. 

Network theory exploits interactions in terms of nodes and edges. In our context, nodes could 
be flocks (commercial and stud), and edges could be the relationships between them, eg. via the 
sharing of genetic material. Within the context of molecular biology, Barabási and Oltvai (2004) 
presented a landmark review outlining the most basic network architectural measures including 
degree distribution, clustering coefficient and path length. These three measures alone allow 
distinguishing random from non-random networks. 

The aim of this paper was to conduct an initial examination of the value of coupling agent-
based models with network theory to better characterise genetic progress. 

 
MATERIALS AND METHODS 
Data and edits. Data from the August 2010 LAMBPLAN evaluation was downloaded from the 
Sheep Genetics database (Sheep Genetics 2011). Input and output files from the OVIS analysis 
(Brown et al. 2001) corresponding to Poll Dorset and White Suffolk were processed. The initial 
dataset, comprising >1.6M animals from ~1,300 flocks, was edited to include only records from 
fully pedigreed individuals with date of birth available and from flocks with 11 consecutive years 
of records from 1999 to 2009. For the 492,776 sheep (280,950 Polled Dorset and 211,826 White 
Suffolk) in 145 flocks (73 Polled Dorset and 72 White Suffolk) fulfilling these editing criteria, 
OVIS results corresponding to $index8 (the “CarcasePlus” index) were retrieved. Among the 145 
flocks there were 38, 48, 7, 37 and 15, from NSW, SA, TAS, VIC and WA, respectively. 
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Flock attributes. For every flock in the edited dataset, we defined seven attributes as follows: (1) 
Size = Number of animals registered; (2) MatRat = Average mating ratio (ie. Females per male); 
(3) TotConn = Total number of connecting flocks (ie. Flocks with whom sires are being shared); 
(4) HiConn = Connections to flocks with higher average 2010 carcase EBV; (5) LoConn = 
Connections to flocks with lower average 2010 carcase EBV; (6) CarcEBV = Average 2010 
CarcasePlus index and (7) ProgEBV = Average genetic progress based on the regression of 
CarcasePlus index on year of birth for years 1999 to 2009. The last two attributes were used as 
indicators of flock genetic performance. Also, for every pair of connecting flocks we recorded the 
number of sires in common over the same 11 year period. This set of attributes was chosen simply 
to allow exploration of the data: it is by no means the definitive set of all attributes of a network 
and its components that could be examined. 
 
Network construction and visualisation. Flock-to-flock interactions were processed to generate 
a network where nodes were flocks and edges connecting nodes represented the sharing of genetic 
material via common sires. To visualise the resulting network, we used the Cytoscape software 
(Shannon et al. 2003; http://www.cytoscape.org) where the above-mentioned attributes were also 
incorporated in the visualisation schema. 

 
RESULTS AND DISCUSSION 

Table 1 shows summary statistics for the flock attributes. The two indicators of performance 
(2010 average CarcasePlus index and genetic progress over the period 1999 to 2009) were 
moderately correlated with each other (r = 0.474; P < 0.001). This moderate correlation persisted 
when the two breeds were considered separately (Figure 1A) indicating the two indicators are 
complementary measures of performance. Also, larger flocks were associated with higher average 
index value (r = 0.451; P < 0.001). However, this relationship vanished when the actual genetic 
progress was used as indicator of performance (r = 0.072; P > 0.05). Similarly, there was a positive 
association between degree of connectedness and genetic merit: highly connected flocks had 
higher genetic performance regardless of the indicator used, while less connected flocks tended to 
have lower average CarcasePlus index. The separation of the HiConn and LoConn suggests that 
the performance of the partners in a connection is of importance. Flocks with lots of connections 
to low EBV flocks appear to have higher genetic performance and vice versa. This result could be 
attributed to having ignored the flock of origin of the sire(s) involved in the connections. In simple 
terms, high performing flocks are acting as “donors” to many lower performing flocks. 
 
Table 1. Summary statistics for the attributes of the 145 flocks included in this  
 

AttributeA Summary Statistics Correlation withB 

 Mean SD Min. Max. CarcEBV ProgEBV 

Size 3,398 2,060 184 14,393 0.451 0.072NS 

MatRat 16.43 7.72 2.10 41.87 -0.302 -0.229 
TotConn 57.03 24.96 1.00 119.00 0.588 0.394 
HiConn 28.52 17.84 0.00 82.00 -0.396 -0.077NS 

LoConn 28.517 25.154 0 93 0.864 0.446 
CarcEBV 148.793 8.282 130.810 173.967 1.000 0.474 
ProgEBV 4.658 1.127 1.625 8.385 0.474 1.000 
ASee Materials and Methods for definition of flock attributes. 
BCorrelation values with an “NS” superscript are not significantly different from zero (P > 0.05). 
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For the flock network studied, Figure 1B shows the power-law scale-free distribution of the 
number of connections as a function of the number of sires represented in a connection. The vast 
majority of connections are represented by a single or a few sires, while very few connections are 
represented by lots of sires. Also, all 145 flocks were connected to at least one other flock and on 
average they were connected to 57.03 flocks, with a range from 1 to 119 flocks (Figure 1C). 

 
A          B         C 

     
 
Figure 1. A: Relationship between 2010 carcase index EBV and genetic progress from year 
of birth 1999 to 2009 and by each breed (red = Polled Dorset; green = White Suffolk); B: 
Frequency of flock to flock connections by number of sires represented in each connection; 
C: Frequency of flocks as a function of the number of connections. 
 

The network generated with the 145 flocks contained 4,135 edges. This represents a clustering 
coefficient of 39.61% indicating the percentage of the total number of possible connections that 
could exist with 145 nodes (ie 100% would mean all flocks were connected to all flocks).  

After imposing a filtering criterion to only include those flock-to-flock connections represented 
by at least 10 sires, we obtained the visualisation schema presented in Figure 2 with 83 flocks and 
322 connections (ie. Clustering coefficient = 9.46%). The visualisation schema shows a clear 
separation between the two breeds (red = Polled Dorset; green = White Suffolk). At the kernel of 
the network we reveal a White Suffolk flock from WA (flock ID = 23_0090_WA) of medium size 
(6,913 animals in the dataset) and rapid genetic progress (5.91 index units per year). This flock 
provides a key pathway between the two populations (breeds). 
 
CONCLUSIONS 

The network analysis approach provides a useful tool to visualise the characteristics of 
individual flocks and the relationships between flocks, both defined through a number of 
parameters. It highlights key flocks that connect large parts of the industry. As indicated by the 
width of their nodes outline, highly connected flock have mostly higher genetic progress, but also 
flocks can be identified that perform worse than other connected flocks. This would likely indicate 
that these flocks are not making optimal selection decisions when sourcing and/or selling sires.  

The present study represents a first attempt to explore the attributes that should be considered 
when the intention is to perform agent-based modelling in a network theory framework and 
applied to genetic progress in sheep breeding systems. This work tackles an important problem: 
understanding the Australia-wide sheep genetic improvement system, and informing future 
breeding / management decisions using state-of-the-art methods. Further work is required to fully 
exploit the power is the proposed approach in particular with respect to the identification, 
measurement and simulation of the attributes within the context of agent-based models. 
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Figure 2. Network generated by 83 flocks and 322 connections where connections are 
represented by at least 10 sires. Red and green nodes represent Polled Dorset and White 
Suffolk flocks, respectively. Node size represents flock size. Node shape represent origin with 
NSW, SA, TAS, VIC and WA represented by rectangles, ellipses, hexagons, triangles and 
diamonds, respectively. Finally, node line width indicates genetic progress. 
 

In spite of these limitations, three critical outcomes were identified: (1) The tendency for 
highly connected flocks to achieve higher genetic performance; (2) The emergence of ‘hub’ flocks 
providing inter-breed relationships; and (3) The identification of problematic flocks. Importantly, 
we never asked the question “Which, if any, inter-breed flock is highly connected to other flocks 
and yet has an average size but large genetic progress?” Instead, this information emerged as a 
natural phenomenon of the approach undertaken. This type of “naturally emerging” information 
can be used to manage genetic progress better at an individual and at an industry level. 

We conclude that network analysis may help individuals and organisations involved in sheep 
(and other species) genetic improvement, understand and think about the system in new ways, and 
on this basis, the approach warrants further investigation. 
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