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SUMMARY

A kernel method for genomic selection using haplotype information is described. A total of
2,144 Australian Holstein Friesian bulls were genotyped with the Illumina BovineSNP50
BeadChip. The accuracy of direct genomic values for 9 traits was computed as the correlation
between the predicted direct genomic value (DGV) and the current genetic evaluations for a
validation set of young bulls. A kernel method and random regression BLUP, both using SNP
genotypes, were also analysed. The accuracy of DGV derived by the three methods was very
similar. Using haplotype instead of SNP information did not increase the accuracies of DGV and
the kernel method based on SNP gave the highest accuracy overall. Using only SNP genotypes to
predict DGV has the advantage that determining the linkage phase of the haplotypes is not
required.

INTRODUCTION

In genomic selection (Meuwissen et al. 2001), selection decisions are based on direct genomic
values (DGV) derived from high-density single nucleotide polymorphic (SNP) markers. Several
studies have now shown that genomic selection is significantly more accurate than traditional
selection of young animals based on pedigree information (Harris ez al. 2008; Van Raden et al.
2008; Hayes et al. 2009; Moser et al. 2009).

A variety of methods have been suggested for the estimation of DGV and comparisons on real
data have found very similar accuracies of prediction between methods (Gonzalez-Recio et al.
2008, Moser et al. 2009). Methods to estimate DGV are usually implemented using information of
individual SNP genotypes, however, haplotypes generally provide more information than
individual SNP. So far, results of the accuracy of DGV calculated from haplotypes using real data
have not been reported.

The objective of this study was to compare the accuracy of DGV calculated from hapolotypes
to the accuracy of DGV calculated from SNP using field data on 9 traits in Australian Holstein
Friesian cattle. The haplotype approach is based on a kernel method in which haplotype
information is used to measure the genomic similarity between animals.

MATERIAL AND METHODS

Phenotype and genotype data. A total of 2,144 bulls Australian Holstein-Friesian bulls with
genotype and phenotype information were available for this study. Bulls were divided in a training
data set of 1,847 bulls born between 1955 and 2004 and a validation set of 297 young bulls born
between 2001 and 2004, which represented progeny test teams of Genetics Australia for 2007,
2008 and 2009. Of the 297 young bulls in the bull validation set, 240 (80.8%) were sired by bulls
in the training set.

The phenotypes used were deregressed breeding values for protein percentage, fat percentage,
Australian Selection Index (ASI), Australian Profit Ranking (APR) and survival, and daughter trait
deviations for protein yield, fat yield, milk yield and overall type (Otype). The deregression
procedure removed the contribution of relatives other than daughters to the breeding values.
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Phenotypes together with reliability information were provided by the Australian Dairy Herd
Improvement Scheme (ADHIS, http://www.adhis.com.au).

SNP genotypes were derived from the Illumina BovineSNP50 BeadChip (Illumina Inc., San
Diego, USA). After quality control and omitting SNP located on the sex chromosomes, a total of
42,576 markers remained for the analysis.

Analysis methods. Prediction equations to generate DGV were estimated from the training set by
random regression BLUP (R-BLUP) using SNP genotype information and by kernels methods
based on either SNP or haplotype information.

In R-BLUP, regression coefficients are obtained from the solution of the weighted ridge
regression equations:
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where X is an Na,m*Nsyp matrix of genotypes encoded as 0 (homozygote), 1 (heterozygote) or 2
(other homozygote), I is diagonal matrix with non-zero elements 4,,4,,...,4, . The penalty term

A, which is the same for all SNP, overcomes the problem of ill-conditioning when multicollinearity
among columns in X causes X'X to be singular, or nearly so. R is a diagonal matrix with non-zero
elements r;=(1/rel)-1, where rel is the reliability of the phenotype information. The optimal A was
derived by cross-validation.

Kernel based methods use linear models to implement non-linear regression by mapping the
input space to a higher dimensional feature space using kernel functions. One can then perform
ridge regression in the feature space which gives the following square equations:
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where K is @ Nppim*Nanim positive definite matrix with elements K(x,x"), which is a kernel function
that measures the ‘genomic distance’ between two animals. When using SNP information we
applied a Gaussian kernel, i.e. K(x,x")=exp(-||x-x'|[*/c°), where ||x-x'|| is the euclidean distance and
o” scales the distance. For haplotypes we used the hamming distance as genomic distance measure,
which is equal to the number of SNP loci at which alleles are different between a pair of
haplotypes of a given length. Let x = (h;,h;) and x’ = (h,’,h,") be the haplotype pairs to be
compared between two sires, the haplotype distance was then defined as, H(x,x’) = min
{d(hy,h,")+ d(hy,h,"), d(hy,h,")+ d(hy,h,’)}. Based on H(x,x") we compute an exponential kernel as
exp(-H(x,x")/c”). The values of the tuning parameters of each method were obtained by cross-
validation.

Haplotypes for each chromosome were phased using Beagle Version 3.2.1 (Browning and
Browning 2007). The effect of haploytype length was investigated by constructing kernels using
haplotypes including 100, 10 or 5 consecutive SNP.

All methods were implemented in FORTRAN90. The correlation coefficient between predicted
DGV and the realized phenotypes was used to evaluate the accuracy of DGV prediction.

RESULTS AND DISCUSSION

Correlations between predicted DGV and phenotypes of the young bulls in the validation set
obtained by the various methods are shown in Table 1. Overall, accuracies of DGV were very
similar between methods. However, the kernel method based on SNP genotypes slightly
outperformed the haplotype kernel and R-BLUP. These findings are consistent with our previous
analysis (Moser et al. 2009), where we also found very small differences between a range of
different methods proposed for DGV prediction, but where support vector regression (SVR) based
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Table 1. Correlation between DGV and phenotypes in the validation animals derived by R-
BLUP and kernel methods based on information from SNP or haplotypes of different length

R-BLUP Kernel method
SNP Number of SNP in haplotype

Trait 100 10 5

Protein 0.497 0.523 0.483 0.497 0.503
Fat 0.522 0.545 0.467 0.509 0.504
Milk 0.528 0.547 0.510 0.531 0.529
OType 0.503 0.524 0.509 0.510 0.510
Protein% 0.621 0.635 0.617 0.617 0.618
Fat% 0.566 0.582 0.548 0.550 0.542
ASI 0.341 0.346 0.327 0.311 0.316
APR 0.490 0.507 0.470 0.475 0.494
Survival 0.076 0.169 0.147 0.141 0.135

on SNP genotypes gave the highest accuracies overall. The kernel method used here is very similar
to SVR in Moser ef al. 2009.

The largest difference between kernel methods and R-BLUP was observed for the trait
survival, which has low heritability. The correlation between DGV and phenotypes was nearly
twice as high for the kernel methods compared to R-BLUP. This indicates that more training
animals may be required to obtain accurate prediction equations for traits with lower heritability
when using R-BLUP

Kernel methods have the potential to capture high order non-linear interactions between
genotypes. The kernel methods gave similar results compared to R-BLUP which assumes an
additive model, suggesting that there was no additional predictive ability to be gained from these
interactions. This could reflect the response variables in our data set, which are the averages of
performance of bulls over a large number of daughters, so dominance effects are averaged out and
only a proportion of the epistatic variance remains.

Using haplotype instead of SNP information did not improve accuracies of DGV. This could
be partly due to the fact, that the construction of haplotypes inevitably contains errors. Different
ways to derive haplotypes have been described and are implemented in a number of software
programs. For phasing we used Beagle (Browning and Browning 2007) , as it provided the highest
accuracy of correctly phased alleles in simulated data sets that were derived to model the true
Australian Dairy population (Khatkar et al. unpublished). A characteristic of Beagle is that it only
outputs the most likely phase. It would be straightforward to derive a haplotype based distance
from several haplotype candidates and their corresponding frequencies.

We would expect that the performance of the haplotype kernel depends on the degree of LD of
the data set as haplotypes can be inferred more precisely for high LD data sets. However, many
animals in the training and test data share DNA segments from a small number of extensively used
sires so that LD as measured by D' is high in our data (Khatkar et al. 2008). The fact that using
haplotypes of longer length gave similar accuracies to shorter haplotypes indicates that the
accuracy of haplotype construction was very high. High LD could also have contributed to the
good performance of the SNP kernel, as SNP information may be sufficient to capture the
information of distinct haplotypes. Furthermore, a relatively small number of SNP is sufficient to
provide similar accuracy to that achieved with a high-density assay (Moser et al. 2010).

In contrast to R-BLUP, using haplotype instead of SNP information to build kernels does not
increase the dimensionality of the system of equation, as the genomic information is contained in a
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matrix of dimension Nypim*Nanim- This makes kernel methods particularly attractive for handling
genomic information derived from very high-density SNP arrays or re-sequencing projects.

CONCLUSIONS

We proposed kernel methods for genomic selection using high-density SNP assays. The kernel
methods were at least as accurate as random regression BLUP. Overall, predictions using kernels
based on SNP genotypes were slightly more accurate compared to kernels based on haplotype
data. The advantage of using only SNP genotypes is that determining the linkage phase of the
haplotypes is not required and the markers do not need to be mapped. The main disadvantage of
using haplotypes in R-BLUP is that that the number of effects that needs to be estimated is
considerably larger than that for the SNP model. As SNP density and training data size increase
kernel methods will become more attractive for genomic selection, especially when using
information of haplotypes.

In this work we only applied a single measure of genomic similarity based on haplotypes,
however, kernel methods provide enormous flexibility to consider more biological aspects in the
models. For example prediction accuracies might improve if the haplotype block structure is
considered in the models.
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