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SUMMARY
A simulation study examining the effects of ‘regularization’ on estimates of genetic covariance

matrices for small samples is presented. This is achieved by penalizing the likelihood, and three
types of penalties are examined. It is shown that regularized estimation can substantially enhance the
accuracy of estimates of genetic parameters. Penalties shrinking estimates of genetic covariances or
correlations towards their phenotypic counterparts acted somewhat differently to those aimed reducing
the spread of sample eigenvalues. While improvements of estimates were found to be comparable
overall, shrinkage of genetic towards phenotypic correlations resulted in least bias.

INTRODUCTION
Estimates of genetic covariance matrices are inherently subject to substantial sampling variation,

especially if more than just a few traits are considered and if sample sizes are small. Recently, there
has been increasing interest in ‘regularized’ estimation to reduce sampling variation and thus mean
square error, albeit usually at the expense of some additional bias. In quantitative genetic analyses
covariances between traits are partitioned into their genetic (ΣG) and environmental (ΣE) components.
Typically, this results in strong sampling correlations between corresponding estimates, so that their
sum – the phenotypic covariance matrix ΣP – is estimated much more accurately than ΣG. This has
lead to suggestions to borrow strength from Σ̂P in estimating ΣG. A specific proposal, referred to
as ‘bending’, has been to regress the eigenvalues of Σ̂−1

P Σ̂G (λi) towards their mean (Hayes and Hill
1981). In a maximum likelihood (ML) framework, this can be achieved by penalizing the likelihood
by a term proportional to the variance of the estimates of λi (Meyer and Kirkpatrick 2010).

A penalty to the likelihood can be derived from a Bayesian prior probability with the penalty
proportional to minus the logarithmic value of the prior’s density. A quadratic penalty on the λi
thus implies a prior that assumes the λi are normally distributed. A standard prior used in Bayesian
estimation of covariance matrices is an Inverse Wishart (IW) distribution. This paper examines the
scope for improved estimation of ΣG via ML using penalties derived invoking such assumption.

MATERIAL AND METHODS

Penalties. Let log L(θ) denote the (unpenalized) log likelihood for a given model of analysis with
vector of parameters θ. For a penalty P(θ), the penalized likelihood is log LP(θ) = log L(θ)− 1

2 ψP(θ),
where ψ is a tuning factor which determines the amount of regularization to be applied. We consider:

i. A quadratic penalty on the deviation of the canonical eigenvalues (log scale) from their mean
Pλ(θ) ∝ tr

(
Λ − λ̄I

)2 with Λ = Diag
{

log(λ̂i)
}

and λ̄ = tr(Λ)/q (1)
ii. A penalty on the genetic covariance matrix (with Σ̃0

P the estimate of Σp for ψ=0)
PΣ(θ) ∝ C log |Σ̂G | + tr

(
Σ̂−1

G Σ̃
0
P

)
(2)

iii. A penalty on the genetic correlation matrix RG (with R̃0
P the estimate of RP for ψ=0)

PR(θ) ∝ C log |R̂G | + tr
(
R̂−1

G R̃0
P

)
(3)
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where q denotes the number of traits. Using unpenalized estimates of ΣP and the phenotypic correla-
tion matrix, RP, for the scale parameter in the IW prior, penalties PΣ(θ) and PR(θ) imply an empirical
Bayes procedure which shrinks estimates of ΣG and RG towards their phenotypic counterparts.The
IW prior gives C=(ψ + q + 1)/ψ. Approximating C with unity yields penalties proportional to the
Kullback-Leibler divergence between the genetic and phenotypic matrices.

Table 1. Population heritability values (×100)

A B C D E F G H I J K L

40 50 60 70 90 70 80 90 20 30 50 60
40 45 50 55 50 70 30 30 20 25 20 10
40 40 40 40 30 40 30 10 20 20 15 10
40 35 30 25 20 10 30 10 20 15 10 10
40 30 20 10 10 10 30 10 20 10 5 10

Data. A simulation study was carried out for a
paternal half-sib design, considering q=5 traits
recorded on each of n=10 progeny of s=100
unrelated sires. Population parameters were ob-
tained by combining 12 sets of heritabilities (A
to L; see Table 1) with 5 scenarios for genetic
(rG ) and residual (rE ) correlations (S1 to S5).
This resulted in 60 different cases, labelled as
1A to 5L in the following. For S1, rG i j=rE i j=0
for all i, j, so that canonical eigenvalues were equal to the heritabilities. In addition all phenotypic
variances were assumed to be equal, σ2

P i=1 for i=1, q. For S2, rG i j=0.8 and rE i j=0, with σ2
P 1=1,

σ2
P 2=1.5, σ2

P 3=2.25, σ2
P 4=3.375 and σ2

P 5=5.065. For S3 and S4, correlations were assumed to follow
an approximately auto-regressive structure, i.e. rG i j=0.6|i− j| for S3 and and rG i j=0.02 i + (−0.8)|i− j|

for S4, with rE i j=0.5+(−0.4)|i− j| for both (i, j). Finally, for S5 correlations were rG i j=0.5+(−1)i0.05 j
and rE i j=0.2+(−1) j0.1i. Phenotypic variances for S3 to S5 were σ2

P 1=σ2
P 5=3, σ2

P 2=σ2
P 4=2 and

σ2
P 3=1. Data were generated by sampling matrices of crossproducts between and within sires from

appropriate Wishart distributions. A total of 1000 replicates per case were carried out.

Analyses. Restricted ML (REML) estimates of ΣG and ΣE were obtained using a combination of
Method of Scoring and simple derivative-free algorithms to locate the maximum of log LP(θ). To
determine the ‘optimal’ tuning factor (ψ̂) for each analysis, estimates Σ̂ψG and Σ̂ψE were obtained for
a range of values of ψ: 0 to 2 in steps of 0.1, 2.2 to 5 in steps of 0.2, 5.5 to 10 in steps of 0.5, 11
to 100 in steps of 1, 102 to 250 in steps of 2, 255 to 500 in steps of 5 and 510 to 1000 in steps
of 10, 311 in total. For each ψ the unpenalized log likelihood was then calculated as log L(θ)ψ =

−
[(

s − 1
)(

log |ΣB| + tr
(
Σ−1

B MB
))

+ s
(
n − 1

)(
log |ΣW | + tr

(
Σ−1

W MW
))]

/2 with ΣW = Σ̂
ψ
E + 3

4 Σ̂
ψ
G and

ΣB = ΣW + 1
4 nΣ̂ψG. The validation ‘data’ used for this, i.e. the corresponding matrices of mean squares

MW and MB, were not sampled but simply constructed using the population parameters. This can
be thought of as equivalent to sampling an infinite number of additional data sets for the same data
structure. The value of ψ which maximised log L(θ)ψ was then chosen as ψ̂.

Summary statistics. The percentage reduction in average loss (PRIAL) of a covariance matrix is

PRIAL = 100
[
L̄1

(
ΣX , Σ̃

0
X

)
− L̄1

(
ΣX , Σ̂

ψ̂
X

)]
/L̄1

(
ΣX , Σ̃

0
X

)
(4)

with Σ̃0
X and Σ̂ψ̂X the unpenalized and penalized estimates of ΣX , respectively, and L̄1(·) the en-

tropy loss, L1(Σ, Σ̂) = tr(Σ−1Σ̂) − log |Σ−1Σ̂| − q, averaged over replicates. In addition, the relative

Table 2. Mean PRIAL

Penalty Σ̂G Σ̂E Σ̂P

Pλ(θ) 71.3 43.4 1.2
PΣ(θ) 70.6 13.3 1.2
PR(θ) 72.0 37.3 2.2

bias (in %) for parameter θi is calculated as 100 (θ̂i − θi)/θi.

RESULTS
Mean PRIAL values across the 60 cases examined are summarized in

Table 2. On average, the reduction in loss for Σ̂G was about 70%, with little
difference between the types of penalties employed. However, as shown
in Figure 1 there were substantial differences in individual cases. As noted
by Meyer and Kirkpatrick (2010), penalty Pλ(θ) performed best when the
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Figure 1. PRIAL for estimates of ΣG (ordered by values for penalty Pλ(θ)).

population canonical eigenvalues where close together, but tended to over-shrink sample eigenvalues
when they were spread apart. PΣ(θ) yielded substantially less improvements than the other penalties
for cases with similar λi, in particular 1A, 1B, 1C, 1G, 1I and 1J. With some exceptions, PΣ(θ)
and PR(θ) tended to out-perform Pλ(θ) for cases with a substantial spread of the population λi. As
the canonical eigenvalues are a function of both Σ̂G and Σ̂E , penalty Pλ(θ) resulted in a substantial
improvement in Σ̂E while PΣ(θ) had only a modest effect on Σ̂E . Somewhat surprisingly, PR(θ)
decreased loss in Σ̂E by almost as much as Pλ(θ). As to be expected from the nature of penalties
imposed, estimates of ΣP were little affected by penalized estimation.

Bias. The mean relative bias in estimates of individual canonical eigenvalues, genetic variances (σ2
G i)

and heritabilities (h2
i ) is given in Table 3. As expected from theory, unpenalized estimation resulted in

systematic overestimates of the largest and underestimates of the smallest λi. While all three penalties
alleviated this bias, they acted in a different fashion. This is illustrated in Figure 2 for case 1K. With
most of the 60 cases examined representing scenarios with a substantial spread of population λi,
Pλ(θ) resulted on average in over-shrinkage. On the relative scale this was most pronounced for λ5,
for which half the population values were less than 0.05. Penalty PΣ(θ) predominantly affected the
estimates of the smallest λi. Whilst PR(θ) also over-shrunk the smallest λi, this was less pronounced
than for the other penalties and estimates of the largest, most important values were least biased.

It has to be emphasized that standard, unpenalized REML estimates are biased, as estimates
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Figure 2. Mean estimates (H �) of
canonical eigenvalues for case 1K
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Figure 3. Mean estimates of rG 45

are constrained to the parameter space. This is most evident in
the upward bias in estimates of the lowest heritability, ĥ2

5, and
a small downwards bias in the largest value, ĥ2

1. Shrinking
canonical eigenvalues towards their mean exacerbated these
biases. Penalty PΣ(θ) affected the lower heritabilities in a
similar way to Pλ(θ) but tended to exaggerate estimates of the
higher values. Again, PR(θ) resulted in the least bias in the
penalized estimates. As penalized estimation had negligible
effects on estimates of the phenotypic components, the pat-
tern of relative bias in estimates of genetic variances closely
followed that for the corresponding heritabilities.

Similarly, standard estimates of genetic correlations (rG)
can be biased. Figure 3 shows the mean estimate of rG be-
tween traits 4 and 5 for scenario S2. The population value
is 0.8, shown by the top line. With a corresponding popula-
tion value for the residual correlation of zero, the phenotypic
correlation (rP, shown by the bottom line) ranges from 0.3 to
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Table 3. Mean bias (in %; λ̂i canonical eigenvalue, σ̂2
G i genetic variance, ĥ2

i heritability)

Penalty λ̂1 λ̂2 λ̂3 λ̂4 λ̂5 σ̂2
G1 σ̂2

G2 σ̂2
G3 σ̂2

G4 σ̂2
G5 ĥ2

1 ĥ2
2 ĥ2

3 ĥ2
4 ĥ2

5

None 9.4 26.5 16.7 -19.5 -78.8 -0.9 4.1 4.7 7.3 12.5 -1.1 3.8 4.5 7.2 12.3
Pλ(θ) -3.7 16.3 28.8 57.7 101.4 -7.0 4.6 11.4 23.5 45.3 -6.5 4.6 11.5 23.4 44.9
PΣ(θ) 8.1 24.9 24.7 39.1 75.3 0.8 10.4 15.7 26.1 45.1 0.7 10.0 15.4 25.6 44.3
PR(θ) 1.3 16.2 20.8 37.3 57.2 -2.3 2.1 4.8 8.6 17.2 -2.1 2.2 4.9 8.8 17.2

0.06. Unpenalized estimates of rG were the more subject to sampling variation and thus the more
biased, the lower the corresponding heritabilities. All three penalties shrunk r̂G towards r̂P, with Pλ(θ)
resulting in most additional bias. For this scenario, estimates using PR(θ) were consistently closer to
the population values than those from PΣ(θ), but for other constellations of correlations differences
were less clear cut. Across all 10 correlations amongst the 5 traits and all 60 cases, mean deviations
of estimates r̂G from their population values were −0.019, −0.046, −0.039 and −0.039 for standard
estimates and estimates employing penalties Pλ(θ), PΣ(θ) and PR(θ), respectively.

DISCUSSION
Results show that regularized estimation of genetic covariances matrices can result in estimates

which, on average, have greatly reduced loss, i.e. are closer to the population values and have lower
mean square errors than standard, unpenalized estimates. This can be achieved by penalizing the
likelihood function with penalties aimed at reducing the spread of sample eigenvalues or at shrinking
genetic covariance and correlation matrices towards their phenotypic counterparts. While a penalty
targeting eigenvalues worked best when population eigenvalues were similar, this is a scenario not
likely to be encountered very often in practical applications. Overall, penalty PR(θ) performed best
with a slightly higher PRIAL for Σ̂G than the other penalties and somewhat lower biases arising from
penalization. This penalty ‘works’ by making estimates of rG similar to those for rP and thus reducing
sampling variation. Interestingly, this can be interpreted as a modern and flexible adaptation of the
suggestion, due to Cheverud (1988), to substitute estimates of rP for rG when the latter can not be
determined reliably.

Simulation results presented used knowledge of the population values to select the tuning parameter
ψ and should thus be viewed as ‘best possible’. Appropriate choice of ψ presents the main challenge
for practical use of penalized ML estimation. Suitable techniques are cross-validation and strategies
limiting the change in likelihood values. While we need to expect a reduction in efficacy when the
tuning parameter is estimated with error, initial simulation results (Meyer 2011) indicate that mild
penalization can improve estimates of genetic parameters for most multivariate analyses where sample
sizes are limited.

CONCLUSIONS
Regularized estimation of genetic parameters can result in ‘better’ estimates by reducing sampling

variation. In a maximum likelihood framework (using either full ML or REML), this is readily
implemented by penalizing the likelihood function. A penalty encouraging shrinkage of genetic
towards phenotypic correlations appears especially suited to ‘borrowing strength’. It is an appealing
strategy to make the most of limited and often precious data which is currently under-utilized.
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