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PERFORMANCE OF CROSS-VALIDATION AND LIKELIHOOD BASED STRATEGIES
TO SELECT TUNING FACTORS FOR PENALIZED ESTIMATION
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SUMMARY
Using simulation, the efficacy of penalized maximum likelihood estimation of genetic covariances

when employing different strategies to determine the necessary tuning parameter is investigated. It is
shown that errors in estimating the tuning factor from the data using cross-validation can reduce the
percentage reduction in average loss at modest sample sizes from 70% or more to 60% or less. Mild
penalization by limiting the change in likelihood is shown to perform well and to yield choices which
are highly correlated with those based on the population parameters. Likelihood based selection of
the tuning parameter is recommended as a simple and effective alternative to cross-validation.

INTRODUCTION
Penalized estimation of genetic parameters has been shown to be capable of yielding ‘better’

estimates, i.e. estimates that are on average closer to the population values than standard, non-
penalized estimates (Meyer and Kirkpatrick 2010). An exposé of the underlying principles and salient
features is given in a companion paper in this volume (Meyer 2011). Penalized estimation requires the
choice of a so-called tuning factor, denoted as ψ, which determines the relative emphasis to be given
to the penalty. Simulation studies examining the benefits of penalization so far have relied on the
knowledge of the population parameters to select the optimal value of ψ (Meyer and Kirkpatrick 2010;
Meyer et al. 2011), and results should therefore be regarded as optimistic. In practical applications
we need to estimate ψ and are bound to do so with error, which affects the gains achievable.

This paper presents a simulation study investigating the performance of penalized estimation of
genetic covariances matrices (ΣG) when tuning factors are estimated using cross-validation techniques
or are determined by limiting the change in the likelihood due to penalization to a given value.

MATERIAL AND METHODS
Data were simulated for a paternal half-sib design, considering q=5 traits recorded on each of

10 progeny of s unrelated sires. Sample sizes considered were s=50, 100, 150, 200, 300, 400 and
1000. Population parameters were obtained combining 12 sets of heritabilities (A to L; see Table 1)
with 5 scenarios for genetic (rG ) and residual (rE ) correlations (S1 to S5; see Table 2, i� j). This
resulted in 60 different cases. Phenotypic variances were set to σ2

P i=1 for S1 and σ2
P i=1.5i−1 for S2

(i=1, q), and σ2
P 1=σ

2
P 5=3, σ2

P 2=σ
2
P 4=2 and σ2

P 3=1 for S3 to S5. Data were generated by sampling
from appropriate multivariate Normal distributions, with 1000 replicates per case.

Penalty. Let log L(θ) denote the log likelihood for a given model of analysis with parameters θ. Penal-
ized estimates were obtained by maximizing log LP(θ) = log L(θ)− 1

2 ψP(θ), with ψ the tuning factor,
and a quadratic penalty P(θ) on the canonical eigenvalues λi, i.e. the eigenvalues of Σ−1

P ΣG (ΣP: phe-
notypic covariance matrix). For Λ1 = Diag

�
log(λ̂i)

�
and Λ2 = Diag

�
log(1 − λ̂i)

�
, the penalty was
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�2
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�
Λ2 − λ2I

�2 with λi = tr
�
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�
/q

Analyses. Restricted ML (REML) estimates of ΣG, Σ̂ψG, and the residual covariance, Σ̂ψE , were
obtained as described by Meyer and Kirkpatrick (2010) for a range of values of ψ: 0 to 2 in
steps of 0.1, 2.2 to 5 in steps of 0.2, 5.5 to 10 in steps of 0.5, 11 to 100 in steps of 1, 102
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Table 1. Population heritability values (×100)

A B C D E F G H I J K L

40 50 60 70 90 70 80 90 20 30 50 60
40 45 50 55 50 70 30 30 20 25 20 10
40 40 40 40 30 40 30 10 20 20 15 10
40 35 30 25 20 10 30 10 20 15 10 10
40 30 20 10 10 10 30 10 20 10 5 10

to 250 in steps of 2, 255 to 500 in steps of 5 and
510 to 1000 in steps of 10, 311 in total. The
‘optimal’ tuning factor, ψ̂, was then determined
using 10 different strategies:

Using population values. 1) For known ΣG, ψ̂
was chosen as the value which maximized the
unpenalized likelihood log L(θ)ψ, for data repre-
sented by mean squares between and within sires
constructed from the population values; see Meyer et al. (2011) for details. This was like sampling an
infinite number of additional data sets for the same data structure (V∞). 2) Sampling one additional
data set for validation and maximizing log L(θ)ψ in these data (V1).

Using K−fold cross-validation. For each replicate, data were split into K folds of approximately equal
size by sequentially assigning complete sire families to subsets. For i=1,K, the i−th subset was set
aside for validation. The remaining K−1 subsets together where used to obtain estimates Σ̂ψG and
Σ̂ψE . Corresponding values for log L(θ)ψi in the validation data were then obtained for all ψ, and ψ̂
was chosen as the value for which the average,

�K
i=1 log L(θ)ψi /K, was highest. Values of 3) K=2

(strategy CV2), 4) K=3 (CV3), 5) K=5 (CV5) and 6) K=10 (CV10) were considered.

Using the likelihood. Finally, ψ̂ was chosen as the largest value for which |log L(θ)ψ − log L(θ)0|, i.e.
the reduction in the unpenalized likelihood due to penalization from the maximum (at ψ=0) (sign
ignored) did not exceed a selected value. Limits were chosen as the χ2

α values (× 1
2 ) which would

be employed in a likelihood ratio test of a single parameter with error probability α, i.e. 7) 0.82
for α=0.2 (strategy L20%), 8) 1.36 for α=0.1 (L10%), 9) 1.92 for α=0.05 (L5%) and 10) 2.51 for
α=0.025 (L2.5%).

Table 2. Correlations values

rG i j rE i j

S1 0 0
S2 0.8 0
S3 0.6|i− j| −0.4|i− j|+0.5
S4 −0.8|i− j|+0.02 −0.4|i− j|+0.5
S5 −1i 0.05 j+0.5 −1 j 0.1 i+0.2

PRIAL. The effect of penalization on Σ̂G was summarized as
percentage reduction in average loss
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�
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G and Σ̂ψ̂G the unpenalized and penalized estimates, respec-

tively, L1
�
ΣG, Σ̂

ψ
G

�
= tr

�
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G Σ̂ψG
�
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G Σ̂ψG | − q the entropy
loss in Σ̂G, and L̄1(·) the average of L1(·) over replicates.

RESULTS
Mean PRIAL values across the 60 cases for the different strategies are summarized in Table 3.

Values declined with sample size, and were highest for strategy V∞. For the balanced case considered
here, V∞ yielded the same results as minimizing the sum of the entropy losses in Σ̂G and Σ̂E .
Simulating a single validation set only in strategy V1 introduced considerable sampling error which
reduced mean PRIAL values by 8 to 10% compared to V∞.

Examining regularization of covariance matrices via thresholding, Rothman et al. (2009) com-
mented that cross-validation yielded similar results than strategy V1. However, in our case, mean
PRIAL values obtained using cross-validation to determine ψ̂were but consistently lower, only slightly
so for small samples but increasingly as sample size increased. Somewhat surprisingly, the PRIAL
achieved using cross-validation decreased with the number of folds considered, K. As illustrated in
Figure 1, this was accompanied by increasing variability of results for individual cases. Clearly, there
was a trade-off between the sizes of the training and validation sets. Our expectation was that a small
training set (low K) would result in a ψ̂ which was somewhat too large as it pertained to the sample
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Table 3. Mean PRIAL for estimates of ΣG

s= 50 100 150 200 300 400 1000

V∞ 72.1 72.9 72.1 71.6 68.2 65.4 55.4
V1 63.7 63.7 63.2 62.9 59.3 55.2 47.0
CV2 62.3 61.8 60.5 58.0 52.6 47.5 30.5
CV3 61.3 60.7 58.2 54.4 48.9 43.6 27.2
CV5 59.7 58.1 55.5 51.5 44.7 39.9 23.6
CV10 57.7 55.3 52.1 47.4 40.6 34.9 21.7
L20% 69.5 69.3 67.8 66.4 62.2 59.0 46.5
L10% 71.4 70.7 68.8 67.4 62.8 59.2 45.5
L5% 71.3 70.2 68.1 66.6 61.6 57.6 42.7
L2.5% 70.3 69.0 66.6 65.0 59.7 55.2 39.1

Table 4. Mean tuning factors (S2 to S5)

s= 50 100 150 200 300 400 1000

V∞ 2.6 1.9 1.8 1.7 1.7 1.7 1.8
V1 7.7 3.2 2.5 2.4 2.2 2.2 2.4
CV2 17.8 7.4 3.8 2.6 2.1 1.8 1.6
CV3 15.5 4.8 2.8 2.2 1.8 1.7 1.5
CV5 13.9 4.3 2.4 1.9 1.7 1.6 1.5
CV10 12.4 3.5 2.2 1.8 1.6 1.5 1.4
L20% 0.5 0.7 0.8 0.9 1.2 1.3 2.1
L10% 0.9 1.2 1.4 1.6 1.9 2.1 3.0
L5% 1.5 1.8 2.1 2.2 2.6 2.9 4.0
L2.5% 2.4 2.4 2.7 2.9 3.3 3.6 4.9

size of the subset, and that the number of replications for larger K would off-set potential inabilities
to ascertain optimal values for ψ due to the limited size of the validation set. Mean tuning factors
for scenarios S2 to S5 are shown in Table 4. As expected, at small sample sizes, cross-validation
resulted in substantially larger estimates ψ̂ than the strategies exploiting knowledge of the population
parameters, i.e. the reduction in PRIAL was due to excessive penalization. S1 was excluded from
these averages as it included several cases (A, B, I and J) for which the optimal tuning factor was
very large. While the pattern of PRIAL values across strategies for S1 was comparable to that for the
other population correlation values, cross-validation for these cases resulted in underestimates of ψ̂.
If S1 had been included in the averages shown in Table 4, results would have been distorted due the
magnitude of ψ̂ for these special cases.

In part, large values of ψ̂ for small sample sizes could be attributed to a few cases where the
cross-validation procedure failed and selected overly large values. For instance, disregarding any
replicates with a ψ̂ more than 5 standard deviations above the mean (within case), reduced values for
CV2 to 12.8, 4.9, 3.1 and 2.4 for s=50 to s=200, but had virtually no effect on the average ψ̂ for larger
sample sizes. This may partially explain the relative small difference in PRIAL obtained from CV2
or CV3 and V1 for the smaller samples. Other reasons may be that the variation in ψ̂ in individual
replicates has relatively little effect on the average loss in penalized estimates of ΣG and that, for
relatively large entropy losses of unpenalized estimates at small s, these translate to small changes in
PRIAL only. While inflation in estimates ψ̂ from cross-validation decreased with the number of folds
considered, mean PRIAL values decreased as K increased. Reasons for this are not clear. Results
suggest that repetition of K−fold cross-validation for small K is advantageous over larger K at similar
computational expense.
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Figure 1. PRIAL for Σ̂G for s=100.

Choosing ψ̂ on the basis of the reduction in the (un-
penalized) likelihood due to penalizing estimates proved
highly successful. Except for the largest sample sizes,
this resulted in lower values of ψ̂ and thus a milder de-
gree of penalization. Nevertheless it outperformed cross-
validation in all cases. For instance, strategy L5% corre-
sponds to a change in a single parameter estimate which
would not be considered significant at a 5% error level.
This yielded mean PRIAL values higher than for strategy
V1 for samples with 300 or less sires. Results suggest
that a limit based on a χ2

α value for α = 0.05 is appropri-
ate for the smaller sample sizes, while an increase in α
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(and thus decrease in the cut-off value) to 0.1 or 0.2 appeared advantageous for larger data sets.
Table 5 summarizes correlations between entropy losses in estimates of ΣG (i.e. L1(ΣG, Σ̂

ψ̂
G))

from V∞ and the other strategies. Values given were calculated across replicates within
each of the 60 cases and pooled across cases. Correlations from 0.54 for s=50 to 0.30 for
s=1000 between strategies V∞ and V1 again emphasize the effect of sampling variation on

Table 5. Correlations (×100) between
L1(ΣG, Σ̂

ψ̂
G) from V∞ and other strategies

s= 50 100 150 200 300 400 1000

V1 54 46 45 42 38 30 30
CV2 50 36 36 27 25 20 11
CV3 45 31 28 20 19 16 9
CV5 39 26 23 16 16 13 6
CV10 36 23 20 13 13 11 6
L20% 89 87 86 83 84 82 83
L10% 90 88 86 83 83 81 82
L5% 89 86 84 80 80 78 79
L2.5% 87 83 81 77 77 74 76

estimates of the tuning factor. As to be expected
from the means in PRIAL, corresponding values for
the cross-validation strategies were low, ranging from
0.50 to 0.06. However, calculating correlations across
cases, these rose to 0.78 to 0.50, indicating that these
strategies will, on average, determine ψ̂ adequately
but that there are substantial effects of errors, espe-
cially for small validation sets (K large). Conversely,
correlations between the likelihood based strategies
and V∞ were high throughout, ranging from 0.77 to
0.80. This suggests that a likelihood based choice can
determine the optimal tuning factor well.

DISCUSSION
Penalized estimation of genetic parameters is

appealing for scenarios where sample sizes are small, regardless of any increased computational
demands. Substantial reductions in average loss, i.e. the deviation of estimates from population values
can be achieved. However, this relies on the appropriate selection of a tuning factor. Cross-validation
is widely advocated as a technique to determine this from the data at hand. Yet, it is laborious and
subject to substantial error in determining ψ̂. These errors appeared especially important for larger
samples, i.e. in small samples any degree of penalization is likely to have a substantial effect while
over-penalization appears to become more detrimental as sample size increases. A particular problem
with cross-validation for data with a family structure is that of representative sampling of data subsets.
In our simulation setting, assigning whole sire families to individual folds appeared a natural choice
and yielded higher PRIAL values than a random assignment. In practical data sets with arbitrary
relationships and fixed effects, choices are less obvious.

Fortunately, choice of ψ̂ based on the change in likelihood can yield penalized estimates closely
related to those which would be obtained if population values were known. As demonstrated, these are
at least ‘as good’ as those obtained using cross-validation. The maximum change in likelihood should
be chosen so as to yield a relatively mild penalty and taking account of the sample size and number of
traits considered. Further work should evaluate suitable limits for a range of other scenarios.

CONCLUSIONS
Penalized maximum likelihood estimation of genetic parameters can result in estimates with

substantially reduced sampling errors. Likelihood based selection of the tuning parameter required is
recommended as a simple and effective strategy.
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