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MULTIVARIATE ESTIMATION OF GENETIC PARAMETERS – QUO VADIS?
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SUMMARY
Problems inherent in multivariate, genetic analyses to estimate covariance components are

discussed. New developments in methodology with the scope to yield ‘better’ estimates are described,
and their application is demonstrated for an analysis of carcass traits of beef cattle.

INTRODUCTION
Estimation of genetic parameters is one of the basic tasks in quantitative genetics. As recording

schemes become more sophisticated and breeding objectives more detailed, the number of traits of
interest is increasing continually. This necessitates multivariate analyses considering more than just a
few traits simultaneously. Fortunately, we are at a stage were advances in modelling, computational
algorithms and the corresponding software for estimation, paired with modern day computer hardware
are bringing large-scale analyses comprising numerous traits and records on tens of thousands of
animals within the realms of reality. For example, Tyrisevä et al. (2011) recently presented a 25-trait
analysis involving more than 100 000 sires.

However, comparatively little attention has been paid to the problems of sampling variation
inherent in multivariate analyses comprising multiple traits. It is well known that the eigenvalues
of estimated covariance matrices are systematically over-dispersed (Lawley 1956) and that a large
proportion of the sampling variances of genetic parameter estimates can be attributed to this excess
variation. Moreover, the effects of this phenomenon increase dramatically with the number of traits.
Hence, even multi-dimensional analyses based on relatively large data sets are likely to yield imprecise
estimates. At the other end of the spectrum, we have numerous scenarios where the numbers of
records are invariably limited. This includes records for new traits of interest or traits which are
difficult or expensive to measure but which may have substantial impact on selection decisions in
livestock improvement programmes. Typical examples are carcass characteristics of beef cattle.
Similarly, evolutionary biologist concerned with quantitative genetics of natural populations are
usually restricted to small samples.

Hence, any avenue to ‘improve’ estimates, i.e. to obtain estimates which are on average closer
to the population values, should be carefully considered. On the one hand, we have accumulated a
substantial body of knowledge about genetic parameters for various traits. However, typically this
is completely ignored. While the Bayesian paradigm directly provides the means to incorporate
such prior information, analyses concerned with the estimation of covariance components more often
than not assume flat or uninformative priors (Thompson et al. 2005). On the other hand, statistical
techniques are available – often referred to as regularization methods – which substantially reduce
sampling variance, albeit at the expense of introducing some bias, and thus yield ‘better’ estimates.
Interest in regularized estimation for multivariate analyses dates back to the Seventies and earlier,
stimulated in particular by the work of Stein (e.g. James and Stein 1961; Stein 1975). Recently, there
has been a resurgence in attention with applications for estimation in very high-dimensional settings,
in particular for genomic data (e.g. Warton 2008; Yap et al. 2009; Witten and Tibshirani 2009).

This paper reviews the principles involved and examines the scope for adapting such techniques
to estimation of genetic parameters for continuous traits in a mixed model framework. A penalized
maximum likelihood scheme and suitable penalties are presented together with an application.

*AGBU is a joint venture of NSW Department of Industry and Investment and the University of New England
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IMPROVED ESTIMATION
The quality of a statistical estimator is generally quantified by some measure of the difference

between the estimator and the true value, or loss. A commonly used quantity is the mean square error.
This is a quadratic loss, comprised of the sampling variance and the square of the bias in the estimator.
We talk about improving an estimator when we are able to modify it in some way so that, on average,
it is closer to the true value, i.e. has reduced loss. Usually this involves a trade-off between a reduction
in sampling variance and additional bias.

For covariance matrices, commonly employed measures of divergence are the entropy (L1) and
quadratic (L2) loss (James and Stein 1961):
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�
Σ, Σ̂

�
= tr

�
Σ−1Σ̂

�
− log

��Σ−1Σ̂
�� − q and L2

�
Σ, Σ̂

�
= tr

�
Σ−1Σ̂ − I

�2 (1)

where Σ and Σ̂ denote a covariance matrix of size q×q and its estimator, respectively, and q represents
the number of traits.

A reduction in loss can often be achieved by regularizing estimators. In broad terms, regularization
describes a scenario where estimation for ill-posed or overparameterized problems is improved through
use of some form of additional information. Often the latter is composed of a penalty for a deviation
from a desired outcome. For example, in fitting smoothing splines a ‘roughness penalty’ is employed
to place preference on simple, smooth functions (Green 1998). Well known forms of regularization
are ridge regression (Hoerl and Kennard 1970) and the LASSO (Tibshirani 1996).

PENALIZED MAXIMUM LIKELIHOOD
Let log L(θ) denote the standard likelihood pertaining to a given model and vector of parameters

θ in a maximum (ML) or restricted maximum likelihood (REML) framework of estimation. Modified
estimates can be obtained by maximizing the penalized likelihood

log LP(θ) = log L(θ) − 1
2 ψP (θ) (2)

where the penalty P (θ) is a selected function of the parameters – aimed at reducing loss in their
estimates – and ψ is a tuning factor which specifies the relative emphasis to be given to the penalty
compared to the usual, unpenalized estimator. Penalizing the likelihood provides a direct link to
Bayesian estimation: For a given prior distribution of the parameters, a corresponding penalty can be
obtained as minus the logarithmic value of the density of the prior.

Penalizing eigenvalues. Recognition of the systematic upwards bias in the largest and downwards
bias in the smallest eigenvalues of estimated covariance matrices early on has led to the development
of various improved estimators which modify the eigenvalues in some fashion whilst retaining the
corresponding eigenvectors. As the mean eigenvalue is expected to be unbiased, a specific proposal
has been to regress all eigenvalues towards their mean in order to reduce their excessive spread. This
is equivalent to assuming eigenvalues have a prior that is a Normal distribution. It yields an estimator
that is a weighted combination of the sample covariance matrix and a multiple of the identity matrix.

Considering a one-way analysis of variance to estimate the genetic covariance matrix, ΣG, Hayes
and Hill (1981) proposed to apply the same type of shrinkage to the canonical eigenvalues, λi, i.e. the
eigenvalues of Σ−1

P ΣG, with ΣP denoting the phenotypic covariance matrix. The resulting estimate
of ΣG is a weighted combination of the standard estimate Σ̂G and λ̄Σ̂P, with λ̄ the mean of the
λi. The authors thus described their method as ‘bending’ ΣG towards ΣP, and argued that this
was advantageous as ΣP typically is estimated much more accurately than ΣG. Hayes and Hill
(1981) presented a simulation study demonstrating that this procedure could substantially increase the
achieved response to selection based on an index derived using the modified estimates. This implies
that ‘bending’ resulted in estimates closer to the population values than unmodified estimates.
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Recently, Meyer and Kirkpatrick (2010) demonstrated that the equivalent to bending in a (RE)ML
framework could be obtained by placing a penalty proportional to the variance among the estimated
canonical eigenvalues on the likelihood:

Pλ(θ) ∝ tr
�
Λ − λ̄I

�2 with λ̄ = tr
�
Λ

�
/q (3)

for Λ = Diag
�
λ̂i

�
. They showed by simulation that this yielded a substantial reduction in loss for

animal model analyses, not only for data with a paternal half-sib family structure but also for data
with many different types of covariances between animals. An alternative form, P �λ (θ), is obtained by
penalizing the eigenvalues on the logarithmic scale, i.e. defining Λ = Diag

�
log(λ̂i)

�
. A disadvantage

of Pλ(θ) or P �λ (θ) is that it is not readily extended to models with more than two random effects. The
canonical decomposition gives ΣG = TΛT� and the residual covariance matrix, ΣE = T(I −Λ)T�,
with I an identity matrix and T the matrix of eigenvectors of Σ−1

P ΣG scaled by a matrix square root
of ΣP. Hence, Pλ(θ) can be thought of as penalizing both ΣG and ΣE .

Penalty Pλ(θ) is based on the assumption that all λi are sampled from a distribution with common
mean λ̄. Hence, using Pλ(θ) has been found to result in over-shrinkage when the corresponding
population values were spread far apart, even when applying Pλ(θ) to log(λi) rather than λi (Meyer
and Kirkpatrick 2010). An alternative is to assume that the true λi are evenly distributed. As λi ∈ [0, 1],
a suitable distribution might be that of the order statistics on the unit interval. These have a Beta
distribution. Treating the λi as independent gives a penalty
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Arguing that unpenalized estimates of the extreme eigenvalues λ̂0
q and λ̂0

1 are overdispersed, i.e. that the
true values lie in the interval [λ̂0

q, λ̂
0
1], we may wish to apply Pβ(θ) after scaling to (λ̂i − λ̂0

q)/(λ̂0
1 − λ̂0

q).

Penalties on matrix divergence. A standard assumption in Bayesian estimation of a covariance
matrix is that of an Inverse Wishart prior distribution, p

�
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�
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(e.g Sorensen and Gianola 2002), with scale parameter Ω and degree of belief ν. Omitting terms not
depending on Σ or Ω and taking logarithms gives (ν + q + 1) log |Σ| + ν tr

�
Σ̂−1Ω

�
.

To ‘borrow strength’ from the phenotypic covariance matrix as above, a penalty which regularizes
Σ̂G by shrinking it towards ΣP can be obtained by substituting the latter for Ω. Adopting an empirical
Bayes approach, we replace ΣP with its estimate from a standard, unpenalized (RE)ML analysis, Σ̂0

P
(Meyer et al. 2011). Letting ν take on the rôle of the tuning factor, gives penalty

PΣ(θ) ∝ C log |Σ̂G | + tr
�
Σ̂−1

G Σ̂0
P
�

with C =
�
ψ + q + 1

�
/ψ (5)

If C is approximated with unity, PΣ(θ) is proportional to the Kullback-Leibler divergence between
Σ̂G and Σ̂0

P, which is the entropy loss L1(·) (Eq. 1) with Σ and Σ̂ exchanged (Levina et al. 2008).
Based on empirical evidence that estimates of genetic (rG ) and phenotypic (rP ) correlations are

often similar, Cheverud (1988) proposed to substitute rP for rG if the data did not support accurate
estimation of rG . A more flexible alternative is to penalize the divergence between estimates of the
genetic (RG) and phenotypic correlation (RP) matrix, i.e. to shrink R̂G towards R̂0

P. Analogous to
(Eq. 5), this can be achieved using a penalty

PR(θ) ∝ C log |R̂G | + tr
�
R̂−1

G R̂0
P
�

(6)
Similarly, we can use this type of penalty to shrink an estimated covariance matrix towards a

chosen structure, akin to the empirical Bayesian approach considered by Chen (1979). For instance, a
highly parsimonious description of ΣG can be obtained assuming a factor-analytic structure, fitting
a low number of factors. In some cases, we may then want to allow for a data-driven compromise
between this structure and an unstructured matrix. A suitable penalty to achieve this with penalized
(RE)ML can be obtained by substituting an unpenalized, structured estimate of ΣG for Σ̂0

P in (Eq. 5).
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Tuning factors. A crucial question is how to determine the appropriate value of ψ for a given analysis.
In a Bayesian vein, this might be chosen a priori, analogous to the degree of belief. Hayes and
Hill (1981) advocated to base the degree of ‘bending’ on the sample size whilst imposing sufficient
shrinkage to ensure Σ̂G was positive definite. Similarly, Meyer (2011) proposed to apply a relatively
mild degree of penalization with ψ chosen so that the deviation of log L(θ) from the maximum (at
ψ=0) was small, arguing that this was likely to exploit some of the benefits of penalized estimation
whilst safe-guarding against excessive shrinkage. A natural choice was a limit of − 1

2χ
2
α for one degree

of freedom, i.e. the critical value in a likelihood ratio test to detect a significant change in a single
parameter at an error probability of α. In a simulation study for 5 traits with α=0.05 this yielded
reductions in loss for small samples of around 90% of those achieved when exploiting knowledge of
the population values to determine ψ.

Most studies concerned with regularization of covariance matrices employ a cross-validation (CV)
strategy to estimate the ‘optimal’ value of ψ. This involves splitting the data into so-called training
and validation sets. Estimates based on the training data are then obtained for a range of possible
values of ψ and corresponding values for a criterion used to assess how well the estimates fit the data –
such as log L(θ) – are calculated for the validation set. Typically, this is repeated several times, e.g.
in a K−fold CV scheme where each fold in turn is used as validation set with the remainder forming
the training set (e.g. Hastie et al. 2001). The value of ψ̂ is then chosen as that for which the average
of the criterion is ‘best’. Clearly, CV is not only a laborious strategy but ψ̂ may also be estimated
with considerable error which can reduce the efficacy of penalized estimation.

Literature reports on the performance of CV generally pertain to analyses estimating a single
covariance matrix only where representative sub-sampling of data sets is straightforward. This is
not the case for data with arbitrary genetic relationship structure and fixed effects with potentially
small subclasses – which is common for records from livestock improvement schemes. Future work
is needed to establish suitable strategies for such scenarios. Additional problems arise with the use
of CV in conjunction with penalized (RE)ML: For small samples – and even smaller subsets – the
likelihood surface in the vicinity of the maximum tends to be flat, so that the maximum often can not
be located accurately. Together with a strong chance of encountering estimates at the boundary of the
parameter space, this can lead to ‘validation’ curves which are somewhat jagged or have unexpected
jumps. In turn, this can be detrimental to the adequate performance of the CV procedure.

SAMPLING PROPERTIES OF PENALIZED ESTIMATES
An extensive simulation has been carried out to examine the performance of penalized estimation

imposing different penalties and employing various strategies to determine the tuning factor. Data
were simulated for q=5 traits, assumed be to multivariate normally distributed, measured on each
of 10 progeny of 100 unrelated sires. A total of 60 sets of population values were considered, with
varying levels and spread of heritabilities, genetic and residual correlations and canonical eigenvalues.
Details and additional results are given in Meyer et al. (2011) and Meyer (2011).

Penalties compared were Pλ(θ), P �λ (θ), Pβ(θ) and PΣ(θ). For each, REML estimates of ΣG and
the residual covariance, ΣE , were obtained for a range of 311 values of ψ from 0 to 1000. Three
strategies to determine ψ were employed: 1) Using the known population values to construct matrices
of mean squares and cross-products between and within sires, ψ̂ was chosen as the value which
maximized the unpenalized likelihood log L(θ)ψ, for data represented by these matrices. This can be
thought of as sampling an infinite number of additional data sets for the same data structure (strategy
V∞). 2) Using K−fold cross-validation as described above, with K=3 (strategy CV3). 3) Finally, ψ̂
was chosen as the largest value for which |log L(θ)ψ − log L(θ)0|, i.e. the reduction in the unpenalized
likelihood due to penalization from the maximum (at ψ=0) did not exceed 1

2χ
2
0.05 for 1 degree of

freedom, i.e. 1.92 (strategy L5%). A total of 1000 replicates were carried out for each case. The effect
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Table 1. Mean PRIAL in estimates of covariance matrices

Population values Cross-validation Likelihood

Pλ(θ) P �λ (θ) Pβ(θ) PΣ(θ) Pλ(θ) P �λ (θ) Pβ(θ) PΣ(θ) Pλ(θ) P �λ (θ) Pβ(θ) PΣ(θ)

ΣG 35.8 71.3 68.1 70.6 23.1 55.9 61.2 54.9 41.4 68.3 69.8 64.9
ΣE 57.9 43.4 59.7 13.3 14.1 26.7 38.0 10.7 43.4 35.0 53.9 12.0
ΣP 1.1 1.2 1.2 1.2 -0.4 0.4 0.2 0.2 -0.7 0.7 0.4 0.4

of penalization on estimates of covariance matrices was then summarized as percentage reduction in
average loss, PRIAL = 100 [L̄1(Σx, Σ̂0

x)− L̄1(Σx, Σ̂
ψ
x )]/L̄1(Σx, Σ̂0

x) with Σ̂0
x and Σ̂ψx the unpenalized

and penalized estimates, respectively, and L̄1(·) the entropy loss in Σ̂x averaged over replicates. In
addition, the relative bias (in %) in estimates of canonical eigenvalues and heritabilities was calculated
as 100 (λ̂i − λi)/λi and 100 (ĥ2

i − h2
i )/h2

i , respectively.

Reduction in loss. Table 1 gives the average PRIAL obtained across the 60 cases for the different
penalties and methods to determine ψ. Mean values hide considerable variation in ranking of penalties
for individual cases. While none was best throughout, penalties on canonical eigenvalues assuming
a common mean tended to perform better than PΣ(θ) and Pβ(θ) when populations values for the λi
were fairly similar. Conversely, PΣ(θ) and Pβ(θ) mostly yielded larger PRIALs for the other cases.

As reported by Meyer and Kirkpatrick (2010), taking logarithms of the canonical eigenvalues
(P �λ (θ)) greatly improved the efficacy of a penalty on the variance among the estimated eigenvalues on
estimates of ΣG. For strategies V∞ and L5% this was accompanied by a reduction in PRIAL for Σ̂E .
This could be attributed to cases with population values λi spread far apart for which Pλ(θ) yielded
a substantial reduction in loss for Σ̂E but yielded poor results for Σ̂G. For strategies V∞ and CV3,
there was little difference in PRIAL for Σ̂G between penalties P �λ (θ) and PΣ(θ). However, values
for Σ̂E for PΣ(θ) were substantially lower, as this penalty involved Σ̂G only. Conversely, penalty
Pβ(θ) resulted in the highest PRIAL for Σ̂E . This can be explained by PΣ(θ) penalizing both λi and
1 − λi, which, for ΣE = T(I −Λ)T�, is equivalent to a direct penalty on ΣE as well as ΣG. Placing a
quadratic penalty on both λi and 1 − λi yielded comparable results (Meyer 2011). Interestingly, Pβ(θ)
was least affected by errors in estimates of ψ for strategies CV3 and L5%.

Table 2. Mean relative bias for CV3

ψ=0 Pλ(θ) P �λ (θ) Pβ(θ) PΣ(θ)

λ̂1 9.5 -11.3 -3.7 -7.8 8.3
λ̂2 26.5 15.9 16.7 20.6 25.5
λ̂3 16.7 22.0 26.8 26.2 25.3
λ̂4 -19.4 10.8 53.3 28.4 42.1
λ̂5 -78.8 -25.6 107.0 34.8 86.7
ĥ2

1 -1.1 -14.0 -6.7 -10.8 0.9
ĥ2

2 3.8 -5.1 4.1 -0.1 10.5
ĥ2

3 4.5 -0.5 11.1 5.7 16.2
ĥ2

4 7.2 7.2 23.1 14.8 26.6
ĥ2

5 12.3 19.5 44.7 30.6 45.7

Bias. Corresponding relative biases in estimates of canoni-
cal eigenvalues and heritabilities (h2

i ) obtained using cross-
validation to determine ψ are shown in Table 2. As ex-
pected from theory, unpenalized estimates of the largest
λ̂i were biased upwards and of the smallest λ̂i were biased
downwards, with the large value for λ̂5 an artifact of small
population values. On average, shrinkage of the λi towards
their mean caused a downwards bias in λ̂1. Whilst taking
logarithms (P �λ (θ)) alleviated this bias, it also resulted in a
substantial upwards bias in λ̂5. However, as the smallest λ̂i
contribute least to estimates of ΣG, the PRIAL for P �λ (θ)
was substantially higher than for Pλ(θ). For penalty PΣ(θ)
bias in the largest λ̂i was very similar to those in unpe-
nalized estimates while the smallest λ̂i were substantially
biased upwards, albeit somewhat less than from penalized estimation using P �λ (θ).

Population values for h2
i declined with trait number. Biases in unpenalized estimates of heri-

tabilities were small, with some effect of constraints on the parameter noticeable which biased h2
1
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downwards and the other values upwards. Penalized estimation increased bias, especially for the ex-
treme values, illustrating the trade-off between sampling variance and bias to reduce loss. Differences
between penalties were similar to those observed for the canonical eigenvalues. Results for strategies
L5% and V∞ exhibited a comparable pattern (not shown) with somewhat larger biases for V∞.

Similarly, unpenalized estimates of genetic correlations were slightly biased, with a mean deviation
from population values of −0.019 and a mean absolute deviation of 0.033. Corresponding values for
strategy V∞ were −0.030 and 0.064 for Pλ(θ), −0.046 and 0.101 for P �λ (θ), −0.043 and 0.094 for
Pβ(θ), and −0.039 and 0.085 for PΣ(θ). Again, biases tended to increase with the associated PRIAL,
though at comparable PRIALs due to P �λ (θ) and PΣ(θ), the latter resulted in less bias in estimates of
rG . As for the other quantities examined, differences between penalties became somewhat blurred for
strategies to determine ψ which did not rely on knowledge of the population parameters.

APPLICATION: CARCASS TRAITS FOR BEEF CATTLE
Carcass characteristics are a typical example of traits that are ‘hard to measure’ but are of major

importance in livestock improvement programmes. Traits considered were carcass weight (WT), eye
muscle area (EMA), percentage intra-muscular fat (IMF), retail beef yield (RBY), and fat thickness
at the P8 site on the rump (P8) and the 12th/13th rib (RIB) of Hereford cattle. Data were collected
at abattoirs as part of a meat quality research project (CRC I) and have been analysed previously;
see Reverter et al. (2000) for further details. There were 1030 animals in the data, all of which had
WT recorded. Numbers of measurements for the other 5 traits were 864 (EMA), 992 (IMF), 370
(RBY), 999 (P8) and 1014 (RIB). All records were pre-adjusted for differences in age at slaughter
or carcass weight as described in Reverter et al. (2000). Only 30% of individuals had all 6 traits
recorded, but 54% had 5 traits measured. Animals in the data were the progeny of 59 sires. Adding
pedigree information yielded a total of 2817 animals.

The model of analysis was a simple animal model, fitting animals’ additive genetic effects as
random effects. The only fixed effects fitted were ‘contemporary groups’ (CG) which represented a
combination of herd of origin, sex of animal, date of slaughter, abattoir, finishing regime and target
market subclasses, with up to 180 levels per trait. Estimates of ΣG and ΣE were obtained by REML
as described in Meyer and Kirkpatrick (2010) using WOMBAT (Meyer 2007a), considering penalties
P �λ (θ) and PΣ(θ), as defined above. Tuning factors ψ were determined using 4 repeats of CV with
K=3 (CV3) and, for PΣ(θ) only, CV with K=10 (CV10). To minimize problems due to splitting
small CG subclasses, data were subdivided by randomly assigning all animals in a CG (for WT) to a
subset. Splits were repeated until all subsets comprised between 29 and 37% and between 8.5 and
11.5% of records for K=3 and K=10, respectively. Results were contrasted to ψ obtained by limiting
the change in log L(θ) to approximately − 1

2χ
20.05 for 1 degree of freedom (L5%).

Table 3. Heritability estimates for carcass traits

No penalty P �λ (θ) PΣ(θ)

L5% CV3 L5% CV3 CV10

ψ 0 2.90 9.50 9.50 17.00 9.75
∆ log L 0 -1.927 -5.077 -1.914 -3.155 -2.106
WT 0.590±0.135 0.532 0.482 0.603 0.615 0.604
EMA 0.643±0.154 0.575 0.464 0.665 0.679 0.665
IMF 0.353±0.122 0.349 0.347 0.390 0.416 0.391
RBY 0.331±0.176 0.329 0.340 0.389 0.427 0.390
P8 0.207±0.093 0.261 0.294 0.285 0.316 0.287
RIB 0.251±0.095 0.289 0.308 0.305 0.331 0.306

Results. Estimates of heritabilities
from different analyses (± approximate
standard errors for ψ=0) together with
the value for ψ and the resulting change
(∆) in log L(θ) are summarized in Ta-
ble 3. Using CV3 to estimate ψ sug-
gested a more severe degree of pe-
nalization than L5%, especially for
penalty P �λ (θ). With small numbers of
records for individual traits, standard
errors for unpenalized estimates were
substantial. Different types of penalty
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and different strategies to select ψ changed results to varying degrees. However, all penalized estimates
were well within the range of the 95% confidence intervals of the unpenalized values. As expected
from simulation results (see Table 2), using P �λ (θ) decreased estimates of the largest values, while
both penalties increased the smallest values similarly. Unpenalized estimates of canonical eigenvalues
ranged from 0.76 to 0.04. Imposing a penalty decreased this to 0.66 − 0.14 (L5%) and 0.53 − 0.21
(CV3) for P �λ (θ) and 0.76 − 0.14 (L5%) and 0.76 − 0.18 (CV3) for PΣ(θ).

Corresponding estimates of genetic correlations are contrasted in Figure 1. Shown for each pair
of traits are the unpenalized estimate together with the range given by plus and minus one standard
deviation, flanked by estimates obtained using P �λ (θ) (left side) and PΣ(θ) (right side), selecting ψ
using strategies L5% and CV3. For most correlations, penalized estimation reduced the magnitude
(sign ignored) compared to unpenalized values. However, changes were relatively small, with average
values of −0.06 (L5%) and −0.12 (CV3) for P �λ (θ) and −0.06 (L5%) and −0.07 (CV3) for PΣ(θ).
With the exception of correlations between EMA or P8 with RIB, average changes in estimates
(over the different penalties applied) were markedly less than one standard deviation. Other studies
have generally reported little genetic association between EMA and RIB, either for carcass traits
or corresponding measures obtained via live ultrasound scanning (e.g. Meyer 2007b). Hence, the
unpenalized estimate of 0.69±0.18 in these data appeared too high and the reduction to 0.5 or less
(0.33 for P �λ (θ) with ψ=9.5) is plausible. In contrast, an estimate of 0.80±0.17 for P8 and RIB agreed
well with literature results. Presumably the consistent, relatively large change in this parameter due to
penalization was, to some extent at least, an artifact of the change in r̂G between EMA and RIB.
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Figure 1. Estimates of genetic correlations.

DISCUSSION
We have outlined an extension of cur-

rent, standard methodology to estimate
genetic parameters in a mixed model
framework that has the scope to yield
‘better’ estimates, especially for multivari-
ate analyses comprising more than just a
few traits. This is achieved by penalizing
the likelihood, with the penalty a func-
tion of the parameters aimed at reducing
sampling variation. A number of suit-
able penalties have been described with
emphasis on those ‘borrowing strength’
from estimates of the phenotypic covari-
ance or correlation matrices which are typically estimated much more accurately than their genetic
counterparts. All penalties presented have a Bayesian motivation, i.e. can be derived assuming certain
prior distributions for covariance matrices or their eigenvalues. In contrast to full Bayesian analyses,
location or scale parameters for the priors are estimated from the data at hand, i.e. our penalized
maximum likelihood procedure can be considered as analogous to an empirical Bayes approach.

Simulation results have been presented, both here and in companion papers (Meyer et al. 2011;
Meyer 2011), demonstrating that substantial reductions in loss, i.e. the difference between true and
estimated values, can be achieved for estimates of genetic covariance matrices. As expected, this
comes at the price of increasing bias, over and above that introduced by constraining estimates to
the parameter space in standard analyses. The magnitude and direction of the additional bias depend
on the population parameters and penalty applied, but in general penalization caused estimates of
the highest heritabilities to be reduced and those of the smallest heritabilities to be increased while
estimates of genetic correlations were reduced in absolute value. As illustrated in the applied example,
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for small samples these changes were usually well within the confidence intervals of the unpenalized
estimates. With comparable reductions in loss to other penalties, PR(θ) which shrinks the genetic
towards the phenotypic correlation matrix appeared to result in least bias (Meyer et al. 2011).

The underlying motivation for the use of penalized estimation, of course, is the belief that improved
estimates of genetic parameters directly translate into better predictions of animals’ genetic merit
and more appropriate selection decisions, in particular when weighing information on different
traits. Hayes and Hill (1981) demonstrated that use of ‘bending’ substantially improved the achieved
response to index selection. Further work should examine the effectiveness of the methodology and
new penalties presented in such context.

CONCLUSIONS
Penalized maximum likelihood estimation provides the means to ‘make the most’ of limited

and precious data and facilitates more stable estimation for multi-dimensional analyses even when
samples are somewhat larger. We anticipate that it will become part of our everyday toolkit as truly
multivariate estimation for quantitative genetic problems becomes routine.
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