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SUMMARY 

A weighted gene co-expression network analysis (WGCN) and a differential network analysis 
were applied to microarray gene expression data for skeletal muscle samples from progeny of 6 
Poll Dorset sires characterised as having high or low estimated breeding values (EBVs) for Eye 
Muscle Depth (EMD). There was strong genetic architecture to the gene expression data. Gene 
network analyses identified expression modules that were enriched for several biological themes 
including protein catabolism, ribosome function, mRNA processing, mitochondria and muscle 
structural proteins. These biological pathways likely contribute to the genetics of enhanced 
muscling in sheep. 
 
INTRODUCTION 

Many genetic loci typically contribute to complex traits, such as enhanced muscling. Gene 
expression studies may provide valuable insight into the genetic architecture of this trait. By 
defining gene co-expression modules and correlating them to the physiological trait, a network can 
be constructed which may lead to the identification of biologically important pathways 
underpinning the genetics of the trait. The objective of the current research was to identify gene 
co-expression modules providing insight into the biology contributing to enhanced EMD in the 
progeny of Poll Dorset sires characterized as having high and low EBVs for the trait. Two 
different gene network strategies were employed. 
 
MATERIALS AND METHODS 
 
Samples and microarray analysis. Nineteen Poll Dorset sheep from 3 high muscling sires (HM; 
sire groups 1-3) and 21 Poll Dorset sheep from 3 low muscling sires (LM; sire groups 4-6) were 
used. HM or LM status was assigned based on sire EBV for EMD. Sire EBVs (range: +2.95 to -
1.07 mm) were in the top 1-15% (HM sires) or 60-95% (LM sires) percentiles (all EBV accuracies 
> 89%). Microarray gene expression analyses (Bovine Affymetrix microarray) of skeletal muscle 
samples used GC-RMA to generate expression summary values (Byrne et al. 2010; Wu et al. 
2004). Statistical analyses were performed using Bioconductor (Gentleman et al. 2004).  
 
Weighted gene co-expression network (WGCN) construction. To efficiently analyse the data-
set its size was first reduced by removal of genes with low mean expression levels (log2 <2.35) or 
little variation in expression (S.D. <0.01). The latter genes provide no significant information in a 
co-expression analysis. The number of genes was then further reduced based on connectivity (the 
sum of the connection strengths between a particular gene and all other genes in the network) to 
the 3,500 most highly connected transcripts in each of the HM and LM datasets. The union of 
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these 2 sets resulted in 5,394 unique genes, which was used for WGCN analysis (Langfelder and 
Horvath, 2008). The absolute value of the Pearson correlation between gene expression and EMD 
EBVs was raised to a power β to create the adjacency matrix which was then used to calculate the 
topological overlap measure (TOM), which shows the degree of overlap in shared neighbours 
between pairs of genes in the network. Gene modules were defined using the Dynamic Tree 
Cutting algorithm on a dendrogram created from the dissimilarity-TOM matrix. Forty two 
modules were initially identified. 
 
Differential network analysis. CoXpress was used to identify genes within the 42 modules that 
were highly correlated in the HM state but not the LM state, and visa versa (Watson 2006). A 
module of genes was defined as differentially co-expressed when it was significantly different 
from random in one condition (HM or LM) but not the other.   
 
Functional enrichment analysis. Functional enrichment analysis was employed to assign 
biological relevance to the gene network modules by using AgriGO (Zhou et al. 2010) and 
DAVID (Huang et al. 2009). The entire microarray was used as the statistical background. 
Conservative default parameters were selected. All p-values were Benjamini corrected.    
 
RESULTS AND DISCUSSION 
 
WGCN. Initial analyses revealed strong sire structure in the gene expression data. This indicated 
that there was a genetic basis to the gene expression data (data not shown). Forty two network 
modules were initially defined and then selected on their module correlation (MC), which is the 
absolute correlation between the module eigengene (a representative gene expression pattern for 
the module) and the EBVs for EMD. Four 
modules were identified based on their MC being 
>0.4. Genes in these modules were retained in the 
selected modules if: 1) their intra-modular 
connectivity (the connectivity of a gene in a 
module with respect to other genes in that module) 
was >0.6; 2) their intra-modular connectivity with 
other modules was <0.6, and; 3) the absolute 
correlation of the gene expression with EMD EBV 
was >0.5. These 4 modules were characterised as: 
Module A (MC = 0.54, 39 genes), Module B (MC 
= -0.52, 88 genes), Module C (MC = -0.52, 33 
genes) and Module D (MC = -0.42, 42 genes).  

  
Figure 1. Expression profiles of module 
eigengenes for the four modules 
identified by WGCN. The first 3 sire 
groups are HM sheep and the last 3 are 
LM sheep. Sire groups are differentially 
shaded.  
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Figure 1 shows the expression patterns of the module eigengenes for the 4 identified modules. 
Conceptually an eigengene is the average expression profile for the module. In general, these 
patterns highlighted similarities within the HM sire groups and similarities within the LM sire 
groups. However, sire group 3 (animals 12-19, HM sire) behaved somewhat differently from sire 
groups 1 and 2 (both HM sires). This variation may be due to: (i) biological variation leading to 
different mechanisms promoting muscling in the sire groups, and/or; (ii) the offspring of this sire 
could have been atypical of its EBV status. Likewise, sire group 6 (animals 36-40, LM sire) was 
somewhat discordant with sire groups 4 and 5 (both LM sires).  

Figure 2 shows a representative AgriGO 
analysis for Module B, which was strongly 
enriched for aspects of protein catabolism. This 
is also apparent from analysis of individual GO 
categories (not shown) as well as other analyses 
e.g. KEGG Pathway (p=2.16E-09) and 
INTERPRO Protein Domain (p=1.42E-10). The 
module eigengene suggests decreased 
proteasome activity in the HM group, which is 
consistent with increased muscling in HM 
animals. Module D was strongly enriched for 
functional terms representing protein synthesis 
at the level of Ribosome Protein Function 
(KEGG Pathway; p=1.22E-29) while module C 
was enriched for RNA Processing (KEGG 
pathway Splicosome; p=0.03). Module A did 
not achieve significance however the striking 
relationship between this module and sire group 
EBV status indicated that further analysis was 
warranted. Consequently, AgriGO functional 
analysis was performed using less stringent 
parameters (p<0.1 and ≥2 genes/term). The 
Biological Process analysis identified Muscle 
Sarcomere Organisation (p=0.02) and Muscle 
Development (p=0.02) and is therefore 
consistent with up-regulation of this module in 
progeny from high muscling sires. 
 
Differential network. Eight of the 42 modules 
were differentially co-expressed (Table 1). Four 
of these modules were found to be non-random 
in the HM group and random in the LM group 
(modules Diff.E, Diff.F, Diff.G and Diff.H) and visa versa for the remaining 4 modules (Diff.A, 
Diff.B, Diff.C and Diff.D).  
 

Enriched biological terms were associated with three differentially co-expressed modules i.e. 
Ribosome and Mitochondrial Function (KEGG Pathway; p=1.3E-79 and p=0.1, respectively); 
RNA Processing (AgriGO analysis (p=0.04), and; Muscle Contractile Fibres (AgriGO; p=1.7E-6). 
 
 
 

 
 
Figure 2.   AgriGO gene ontology analysis. 
The diagram shows a representative 
analysis for Module B (Biological Process).  
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Table 1. Differentially co-expressed modules defined by coXpress. A module is differentially 
co-expressed when the pairwise correlations were nonrandom (p<0.05) in one condition (HM 
or LM) but random in the other condition (p>0.3).   
 

Module Number of 
genes 

P-value 1 Mean 
correlation  

Mean difference 
correlation 

LM 2 HM 3 LM HM LM – HM 
Diff.A 103 0.00 0.66 0.39 0.02 0.37 
Diff.B 128 0.00 0.77 0.37 0.01 0.36 
Diff.C 141 0.00 0.88 0.30 0.03 0.27 
Diff.D 74 0.02 1.00 0.27 0.01 0.26 
Diff.E 8 0.56 0.00 0.02 0.47 0.45 
Diff.F 12 0.99 0.00 0.02 0.51 0.49 
Diff.G 51 0.61 0.00 0.03 0.59 0.56 
Diff.H 3 0.34 0.00 0.04 0.62 0.58 

1 P-value; 2 Low muscling; 3 High muscling 
 
CONCLUSIONS 

There was strong genetic structure in gene expression data obtained from skeletal muscle 
samples of progeny from sires with contrasting EBVs for EMD. Functional gene expression 
networks were identified that are likely to be directly contributing to the muscling EBV status of 
the sires. There were also indications that multiple mechanisms could be contributing to the high 
muscling trait. The WGCNA and differential network analyses identified specific functional 
pathways likely to be directly contributing to the muscling trait. These pathways included protein 
catabolism, protein biosynthesis at the level of ribosome function, myofibril function, 
mitochondrial function and mRNA processing. The future challenge is to link these pathways to 
genetic polymorphisms in specific genes.  
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