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SUMMARY 

Accuracies of different imputation strategies to impute genotype data for untyped or masked 
SNPs were explored using data on 2,727 animals genotyped with the Illumina BovineSNP50 
BeadChip. Various 2-tier and 3-tier imputation scenarios with reference panels of varying sizes 
and marker densities were generated, and compared by masking the known genotypes in the test 
panel. The accuracy of imputation increased as the number of animals in the reference panel 
increased and the SNP density of the test panel increased. For animals genotyped with a low 
density panel, there was a gain in accuracy of imputation from 0.5 % to 7 % in a 3-tiered approach 
using a combination of high and medium and low density reference panels, over a 2-tiered 
approach using only low density and high density panels. The implications for use of ultra-high 
density SNP panels and whole genome sequence content are discussed. 
 
INTRODUCTION 

Genotyping with high density SNP panels (chips) is important for accurate prediction of 
phenotypes and Direct Genomic Values (DGV).  Very high density SNP panels and whole genome 
sequencing is becoming readily available in a number of species. A number of SNP chips have 
been developed in cattle which includes 15k (Khatkar et al. 2007), 25k (Raadsma et al. 2009), 50k 
(Matukumalli et al. 2009) and more recently 650k (http://www.affymetrix.com) and 800k 
(http://www.illumina.com). These SNP chips have now been widely used for genotyping  a 
number of bovine populations. As new chips are developed, re-genotyping previously genotyped 
samples or new samples for whole genome sequencing or very high density SNPs is expensive. A 
more cost effective approach, would be to genotype a small proportion of the population using a 
high-density SNP panel and then employ genotype imputation methods for predicting high-density 
genotypes for the rest of the population genotyped with a lower density and lower cost SNP panel.  

Genotypic imputation is defined as the prediction of genotypes at the SNP locations for which 
assays are not directly available, in a sample of individuals. There are many scenarios where 
imputation can be used. Imputation in this study refers to the situation in which one or more a 
reference panel of animals is  genotyped with a set of higher density SNP chips and is  used to 
predict the genotypes of test samples that have been genotyped with a subset of these SNPs. The in 
silico genotypes obtained by imputation can then be used in genome wide association and genomic 
selection analyses (Browning and Browning 2007; Goddard and Hayes, 2009). Such strategies are 
likely to result in more accurate predictions of DGV, and improve the ability to resolve or fine-
map QTL or QTN, and facilitates meta-analysis across larger data sets with heterogeneous SNP 
information 

A number of imputation programs (fastPHASE (Scheet and Stephens 2006), MACH (Willer et 
al. 2008), IMPUTE (Howie et al. 2009), Beagle (Browning and Browning 2007) allow imputation 
of genotypes. Accuracy of imputing of sporadic missing genotypes that  occur when calling 
genotypes from genotyping chips, is often very high. The present study aimed to infer genotypes at 
untyped markers (systematic missing data) using various reference panels. IMPUTE 
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accommodates the use of different reference panels in a tiered or staged fashion. IMPUTE has also 
been demonstrated to achieve a high accuracy of imputation (e.g.Weigel et al., 2010); hence we 
chose this method to examine the performance of imputation under various scenarios by varying 
the size and SNP density of the reference and test panels.  
 
MATERIAL AND METHODS 
Genotype data: The genotypic data on  2,727 animals (2,205 bulls and 522 cows) genotyped  
(Moser et al. 2010) with the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, USA)) 
were used for this study. After quality control, a total of 1324 SNPs on chromosome 20 were used 
for the present analyses.  
 
Imputation methods:  We utilized IMPUTE program which is based on an extension of the 
hidden Markov models, and uses a fine-scale recombination map across the genome (Howie et al. 
2009). IMPUTE provides the probability of different possible genotypes at each missing 
genotype. We used the best-guess genotype as predicted genotype for comparing the accuracies 
under different scenarios. The accuracy of imputation was computed as the percentage of correctly 
predicted genotypes, and error rate as the percentage of incorrectly predicted genotypes.  
	  
Imputation Scenarios:	  Two imputation strategies (2-tier and 3-tier) were compared.  In the 2-tier 
a single reference panel with higher density SNPs was used to impute the genotypes in the test 
panel genotyped with a lower density SNP panel. In the 3-tier approach two reference panels were 
used; a top or main reference panel genotyped with high-density SNPs and a middle panel with 
medium-density SNPs and a test panel genotyped with a low- density SNP panel. Three sizes of 
top reference panels were generated by randomly selecting 27, 136 or 270 bulls representing 1, 5 
and 10 % of total samples. Two sizes of middle panels consisting of 10 % and 50 % of the total 
samples were tested.  A set of evenly spaced 611 SNPs, equivalent to 20k genome wide SNPs, was 
used for middle reference panel. Two densities of SNPs for test panels representing a genome wide 
3k and 5k were explored.  These SNP densities were generated by iterative thinning the SNPs 
based on spacing and retaining SNPs with higher minor allelic frequency (MAF). The combination 
of the size of panels and density of SNPs under the different scenarios are presented in Table 1 and 
Table 2. 
 
RESULTS AND DISCUSSION 
 Accuracies of imputation for different imputation scenarios using the 2-tier approach (scenario 
1 to 8) are given in Table 1 and for the 3-tier strategy (scenario 9 to 15) in Table 2.  For both 
strategies, the accuracy of imputation increased with the size of the reference panel. The accuracy 
of imputation increased from 82.1 % (scenario 9) to 92.7 % (scenario 11) when the reference 
sample was increased from 27 to 270 bulls for the 2-tier approach (Table 2).  
 Accuracy of imputation was higher under the 3-tier strategy in all the scenarios which were 
directly comparable to the same scenarios under the 2-tier approach. The accuracy of imputation in 
scenario 1 (2-tier) using a single reference panel of 27 bulls was 82.1 % (Table 1), and the 
accuracy increased by more than 7 % over scenario 1 when an additional panel of medium density 
SNPs was included in a 3-tier framework (scenario 8 & 9, Table 2). The additional gain in 
accuracy was smaller when the number of bulls in the top panel was increased. For example, the 
gain in accuracy was only 0.6 % under scenario 11 as compared to Scenario 3 where the top panel 
had 272 bulls (10 % of the samples). Similar observations were made when the test panel had 144 
SNP (equivalent of 5k genome wide density).  However, the gain in the accuracies in 3-tier over 2-
tier were slightly less for the 5k test panel compared to the 3k test panel. For example there was a 
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6.2 % increase in accuracy of scenario 13 (3-tier) over scenario 4 (2-tier). This shows, that as the 
SNP density in test panel increases, the additional gain of using 3-tier approach becomes smaller.  
Highest accuracy of imputation (97.4 %) was obtained under scenario 7 with largest panel of 
reference bulls and a 20k medium density test panel.   
	  
Table	  1.	  Accuracy	  of	  imputation	  under	  different	  scenarios	  using	  2-‐tier	  approach	  
 Reference Panel   Test Panel 

Scenario n animals 
n snp 
(50k)   n animals n snp chip Accuracy 

1 27 1324  2700 85 3k 82.1 
2 136 1324  2591 85 3k 90.6 
3 272 1324  2455 85 3k 92.7 
4 27 1324  2700 144 5k 84.8 
5 136 1324  2591 144 5k 92.7 
6 272 1324  2455 144 5k 94.7 
7 272 1324  2455 611 20k 97.4 

 
Table	  2.	  Accuracy	  of	  imputation	  under	  different	  scenarios	  using	  3-‐tier	  approach	  
	  

 
Top Reference 

Panel 
 Middle Reference 

Panel 
 

Test Panel 

Scenario n animals 
n snp 
(50k) 

 

n animals 
n snp 
(20k) 

 n 
animals n snp chip Accuracy 

8 27 1324  270 611  2430 85 3k 89.1 
9 27 1324  1347 611  1353 85 3k 89.3 
10 136 1324  1279 611  1312 85 3k 92.3 
11 272 1324  1186 611  1269 85 3k 93.3 
12 27 1324  270 611  2430 144 5k 90.9 
13 27 1324  1347 611  1353 144 5k 91.0 
14 136 1324  1279 611  1312 144 5k 94.1 
15 272 1324  1186 611  1269 144 5k 95.2 
 

We also investigated the effect of minor allelic frequencies (MAF) of the masked SNPs on the 
accuracy of imputation. The error rate is higher and more variable when the MAF of SNP 
increases above 0.1 (Figure 1), which suggests that genotypes of common SNP are more difficult 
to impute. In general there is higher probability of sampling correct genotype for a SNP with lower 
MAF from the distribution of three genotypes. Impute uses information from adjacent SNPs to 
impute correct haplotypes. Hence, accurate imputation of common SNP may require higher 
density SNP panels in the test samples. There was no pattern of relationship of the error rate with 
the HWE test of the SNP (data not shown).  
 In this study we demonstrated that additional gains in accuracy of genotype imputation can be 
achieved by employing an additional reference panel of medium SNP density in the imputation 
process. This approach is in particular suited for situations where a small fraction of the population 
is genotyped for a high-cost ultra-high density assay or whole genome sequencing data is 
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available, and a larger panel of samples is genotyped with medium-density SNP chip as now 
becoming available in cattle. Then very large numbers of routine field samples genotyped with a 
low-cost lower-density panel can be imputed for whole genome sequence using the reference 
panels in tiered fashion. These in-silico genotypes would contribute towards increased accuracy of 
genomic selection and increased genetic gains with the use of DGV. 

   
Figure 1. Comparison of imputation error rate versus MAF of SNP for imputation scenario 3, 6 
and 7.  
 
CONCLUSIONS 

In this study we present the utility of IMPUTE as a genotype imputation method with varying 
sizes of reference panels and different SNP density. We showed that there is a gain in accuracy of 
imputation by including an intermediate reference panel in 3-tier (two reference panels) as 
compared to using 2-tier (single reference panel) especially when the reference panel is small. The 
accuracy of imputation is affected by the size of the reference panel, the density of SNP in the test 
panel and also by MAF of the imputed SNP. 
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