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SUMMARY 

The paper uses the technical computer software Mathematica® to explain the features inherent 
in the procedure emBayesB which is a fast EM algorithm for implementing genomic selection by 
mapping QTL in genome-wide dense SNP marker data. The prior mixture for a SNP effect and the 
bimodal shape of the posterior distribution of a SNP effect are displayed graphically, along with 
visualisations and calculations of how emBayesB estimates genomic breeding values. The 
companion paper (Shepherd et al. 2009) uses emBayesB to analyse simulated data. 

 
INTRODUCTION 

Genomic selection is a new tool for genetic improvement in animal breeding which uses 
genome-wide dense SNP markers to ensure all QTL are in linkage disequilibrium (LD) with at 
least one marker. The first step in genomic selection is the estimation of SNP effects using 
phenotype and genotype data in a reference population (training data), followed by calculation of 
genomic breeding values (GEBV) using only marker genotypes (and previously estimated SNP 
effects) in the population for selection (validation data). Mixed model methods and Bayesian 
MCMC (Markov Chain Monte Carlo) methods have been recommended for genomic selection. 
Bayesian MCMC methods generally have the highest accuracy of predicting GEBV but are slow 
computationally (Lund et al. 2009). An Expectation Maximisation (EM) algorithm can use 
valuable information in a prior distribution as in a Bayesian approach and is usually much faster. 
This paper describes an EM algorithm called emBayesB for genomic selection and explains 
visually the features inherent in emBayesB using the technical computer software Mathematica®. 
 
EM APPROACH FOR 1 SNP 

It is instructive to first visualise the estimation of the effect of one SNP. Then the algorithm is 
extended to the estimation for m SNP where m is usually much larger than n, the number of 
individuals. 

  

Data model for 1 SNP. The linear model  is used to relate record  of individual i to 

the SNP effect 

gy = b + e iy

g  where element  of vector b  is the number (0, 1 or 2) of reference SNP alleles 

for individual i. We standardise b so that 
ib

' 01 b  and ' nb b . The errors are assumed normal 

and independent so that | ~ ,g 2

eg N y . Using maximum likelihood (ML) we find that the 

likelihood distribution of the estimate of the SNP effect 

b I

g  given the data is normal ie. 

| ~ Lg N , 2g y  where the best estimate of the SNP effect is the mean Lg  ( '1
n b y )  which is 

the weighted data average and 2 2

e
1
n  . The two likelihoods displayed in Figure 1A (for 

.Lg 0 6 1and ) illustrate the finding that, as n increases, the likelihood becomes narrower 

ie. we are more confident about the ML (or best) estimate of 

2

e
g  with more information. 
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Figure 1. A. Normal likelihoods and DE distributions. B. Prior mixture for  when  g γ = 0.5

 
Prior distribution for 1 SNP. It is assumed a priori that SNP effect g  has a probability 1  of 

being 0 and a probability   (due to LD with QTL) of being distributed as a Double Exponential 

(DE) with parameter   ie. ( ) . exp( | |)
DE

p g 0 5 g PDF    . Figure 1A shows the DE shape for 

two values of  . The prior for g  can be written as a mixture ( ) ( )
DE

) (g PDF 1    g  

where ( )g  is the Dirac Delta function which has all its probability mass at 0. Figure 1B shows 

the prior mixture for g  using a Spike (or DE with ) for the Dirac Delta function (as a 

Dirac Delta function cannot be easily graphed)  and a DE with 

Spike 500 

DE 5   for the 50% ( .0 5  ) 

chance of the SNP being in LD with QTL. As the Spike’s   gets larger and   gets smaller, the 

prior mixture is often described as a ‘spike and slab’ prior (see prior mixture in Figure 2A).  
 
Posterior distribution for 1 SNP. The posterior for g  is illustrated in Figure 2. When the 

likelihood estimate ( Lg ) is distant from 0 the posterior distribution resembles the likelihood 

distribution, but is slightly displaced (or regressed) toward 0 as shown in Figure 2A. When Lg  is 

much greater than 0, the mode of the regressed likelihood is  2

modeL DEg D   E  which is the 

posterior mode for a DE only prior, ie. the LASSO estimate (Yi and Xu 2008) of a SNP effect, as 

the Spike has no influence if Lg  is distant from 0. As Lg  gets closer to 0 the posterior becomes 

bimodal, with the height at 0 increasing the closer Lg  is to 0 (Figure 2). This reflects the fact that 

the true g  is more probably 0, the closer Lg  is to 0. Using Mathematica® it can be shown that the 

area under the DE part of the posterior is 0.99, 0.60 and 0.14 for Lg  values of 0.2, 0.15 and 0.1 

respectively, assuming the parameter values given in Figure 2. These DE areas are basically the 
posterior probabilities of g  being non-zero given the assumed or current parameter estimates. The 
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posterior probability  (see Figure 2) of a SNP effect being non-zero (ie. in LD with at least 

one QTL) form the E-step of the EM algorithm for genomic selection called emBayesB. 
post

 
Figure 2. Bimodal posterior distribution of  as g Lg  approaches 0 for a ‘spike and slab’ 

prior where 2

DE eγ, λ , σ  and  are 0.1, 5, 500, 1 and 400 respectively. nSpikeλ ,

 
EM ALGORITHM FOR MANY SNP 

The data model for m SNP is  which linearly relates record  of individual i to the 

jth SNP effect 

y = Bg + e iy

jg  where element  of matrix  is the number (0, 1 or 2) of reference alleles of 

SNP j for individual i (usually standardised). The errors are assumed normal and independent such 

that 

i jb B

| ~ ,N 2

ey g gB I

jz 1

. If we knew precisely which SNP were in LD with QTL (maybe only 

100 SNP), then the problem would be much easier. This missing information is crucial in 

formulating an EM algorithm. We define an unknown variable  which indicates if the jth SNP is 

in LD with QTL ( ) or not (

jz

jz 0 ). If jz 1 , the SNP effect jg  is assumed to be a 

Double Exponential random variable with parameter  ; while if jz 0 , the SNP effect is 

assumed to be distributed as a Dirac Delta (DD) function which has all its probability mass at 0. 
We assume a priori that a fraction   of the SNPs are in LD with QTL.  

Using EM theory we are able to develop an iterative sequence of E and M-steps which 
converge to maximum a posteriori (MAP) parameter estimates.  At iteration k the E-step involves 

calculating k
j   | & jz yE all current estimates

, , , 2

j eg

, the posterior probability that SNP j is in LD 

with QTL given the data and all current parameter estimates (eg. like calculating  in Figure 

2). This is done analytically and fast. Then the M-step uses derived formulae (not shown here) to 

calculate updated estimates of 

post

    given the data and the current values of k
j . This step 

is also done very quickly using Gauss-Seidel iteration for the many estimates of jg . Iterating 
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between the E and M-steps the algorithm converges quickly to produce MAP estimates of jg , ML 

estimates of , , 2

e     and posterior probabilities k
j  (which are useful for mapping QTL). 

 
DISCUSSION 

The derived formula  ˆ k k k

j j mode j mode j modeg DE 1 DD DE      gives the MAP estimate of 

jg . This formula shows that the best estimate of a SNP effect is a weighted average of the two 

posterior modes. However the mode (DDmode) for a Dirac Delta only prior is always 0. So we have 
that the best estimate of the SNP effect with emBayesB is a proportion of the DE mode. But 
genetic gain is greatest if the posterior mean is used to estimate each QTL effect (Goddard and 

Hayes 2007). Using Mathematica®, we can show for Figure 2 that the posterior mean, for Lg  

values of 0.2, 0.15 and 0.1, is 0.1848, 0.0829 and 0.0124 respectively, while the weighted average 
of the two posterior modes is 0.1847, 0.0827 and 0.0120 respectively. Hence the weighted average 
of the two posterior modes is an accurate estimate of the posterior mean of a SNP effect. Bayesian 
MCMC methods use the estimated posterior mean of each SNP effect in the prediction equation 

, whereas emBayesB uses the weighted average of the two posterior modes. Hence it 

is no surprise to find that the accuracy of 0.85 between GEBV and true breeding value for 
emBayesB is similar to the accuracies of 0.84 to 0.87 for Bayesian MCMC methods when 
analysing the validation data of the QTLMAS XII dataset  (Shepherd et al. 2009). 

ĝGEBV = B

emBayesB works by shrinking the ML estimates of the SNP effects. If the ML estimate is 
distant from 0 the shrinkage is mainly due to the DE prior and the shrunken estimate is called the 
LASSO (Yi and Xu 2008). The closer the ML estimate is to 0, the greater is the shrinkage. This is 
due to the Dirac Delta prior kicking in and reflects the fact that only a small proportion (ie.  ) are 

believed non-zero a priori. The algorithm combines this prior belief with the data to iteratively 
derive a probability for each SNP of being non-zero. Then it further regresses the DEmode (or 
LASSO estimate) for this SNP by its probability of being non-zero. It is this double shrinkage 
which makes emBayesB so accurate and able to handle all the noise in the data from having so 
many SNP most of which aren’t in LD with QTL. Basically it removes the effects of lots of SNP 
from the genomic breeding value as these SNP are most probably not in LD with QTL. 

Not only is emBayesB accurate when predicting breeding values but it is also very fast. 
emBayesB uses Gauss Seidel iteration to quickly calculate an analytical posterior-like mean for 
for each SNP effect and iterates until the SNP estimates converge. Bayesian MCMC methods 
sample sequentially from distributions which eventually converge to the true posterior distribution 
for each SNP. As there are thousands of SNP, the SNP distributions take a long time to converge. 
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